Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2018-Feb

Estimation of phloem carbon translocation belowground at stand level in a hinoki cypress stand.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Daniel Epron
Masako Dannoura
Atsushi Ishida
Yoshiko Kosugi

Lykilorð

Útdráttur

At stand level, carbon translocation in tree stems has to match canopy photosynthesis and carbohydrate requirements to sustain growth and the physiological activities of belowground sinks. This study applied the Hagen-Poiseuille equation to the pressure-flow hypothesis to estimate phloem carbon translocation and evaluate what percentage of canopy photosynthate can be transported belowground in a hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) stand. An anatomical study revealed that, in contrast to sieve cell density, conductive phloem thickness and sieve cell hydraulic diameter at 1.3 m in height increased with increasing tree diameter, as did the concentration of soluble sugars in the phloem sap. At tree level, hydraulic conductivity increased by two orders of magnitude from the smallest to the largest trees in the stand, resulting in a stand-level hydraulic conductance of 1.7 × 10-15 m Pa-1 s-1. The osmotic potential of the sap extracted from the inner bark was -0.75 MPa. Assuming that phloem water potential equalled foliage water potential at predawn, the turgor pressure in the phloem at 1.3 m in height was estimated at 0.22 MPa, 0.59 MPa lower than values estimated in the foliage. With this maximal turgor pressure gradient, which would be lower during day-time when foliage water potential drops, the estimated stand-level rate of carbon translocation was 2.0 gC m-2 day-1 (30% of daily gross canopy photosynthesis), at a time of the year when aboveground growth and related respiration is thought to consume a large fraction of photosynthate, at the expense of belowground activity. Despite relying on some assumptions and approximations, this approach, when coupled with measurements of canopy photosynthesis, may further be used to provide qualitative insight into the seasonal dynamics of belowground carbon allocation.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge