Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2008

Evidence of phloem boron transport in response to interrupted boron supply in white lupin (Lupinus albus L. cv. Kiev Mutant) at the reproductive stage.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Longbin Huang
Richard W Bell
Bernard Dell

Lykilorð

Útdráttur

The present study investigates whether previously acquired boron (B) in mature leaves in white lupin can be retranslocated into the rapidly growing young reproductive organs, in response to short-term (3 d) interrupted B supply. In a preliminary experiment with white lupin in soil culture, B concentrations in phloem exudates remained at 300-500 microM, which were substantially higher than those in the xylem sap (10-30 microM). The high ratios of B concentrations in phloem exudates to those in the xylem sap were close to values published for potassium in lupin plants. To differentiate 'old' B in the shoot from 'new' B in the root, an experiment was carried out in which the plants were first supplied with 20 microM (11)B (99.34% by weight) in nutrient solution for 48 d after germination (DAG) until early flowering and then transferred into either 0.2 microM or 20 microM (10)B (99.47% by weight) for 3 d. Regardless of the (10)B treatments, significant levels of (11)B were found in the phloem exudates (200-300 microM in 20 microM (10)B and 430 microM in 0.2 microM (10)B treatment) and xylem sap over the three days even without (11)B supply to the root. In response to the 0.2 microM (10)B treatment, the translocation of previously acquired (11)B in the young (the uppermost three leaves), matured, and old leaves was enhanced, coinciding with the rise of (11)B in the xylem sap (to >15 microM) and phloem exudates (430 microM). The evidence supports the hypothesis that previously acquired B in the shoot was recirculated to the root via the phloem, transferred into the xylem in the root, and transported in the xylem to the shoot. In addition, some previously acquired (11)B in the leaves may have been translocated into the rapidly growing inflorescence. Phloem B transport resulted in the continued net increment of (11)B in the flowers over 3 d without (11)B supply. However, it is still uncertain whether the amount of B available for recirculation is adequate to support reproductive growth until seed maturation.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge