Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2014-Jul

First Report of Seedling Blight of Eastern Poison Ivy (Toxicodendron radicans) by Colletotrichum fioriniae in Virginia.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
M Kasson
J Pollok
E Benhase
J Jelesko

Lykilorð

Útdráttur

Colletotrichum fioriniae is a member of the large cosmopolitan C. acutatum species complex (2). Known agricultural hosts of C. acutatum include apple, European blueberry, grape, olive, papaya, and strawberry (2). In contrast, the life history of C. fioriniae ranges from an epizootic of certain scale insect populations to an endophyte of plants (3,4). The present study extends the phytopathology of C. fioriniae to include poison ivy seedlings. Poison ivy (Toxicodendron radicans) drupes were collected from solitary lianas in Roanoke and Montgomery counties, Virginia. These drupes were subjected to experiments aimed at producing sterile seedlings (1); however, there was extensive blighting and wilting in the germinated seedlings. Associated with the drupes and seedlings was a fungus with white to pale olivaceous grey mycelium with orange blister-like conidiomata and sclerotial masses enclosing the drupe mesocarp as well as conidiomata emerging from blighted, necrotic leaves. Condiomata were plated onto acidified potato dextrose agar (APDA) and oatmeal agar (OA). This consistently yielded colonies identical to those described from diseased tissues and were putatively identified as C. acutatum based on the presence of acervuli containing hyaline, smooth-walled, aseptate conidia with acute ends, the absence of setae, and formation of red pigments in culture (2). Conidial dimensions of four isolates most closely aligned with reported measurements for C. fioriniae (4): mean length ± SD × width ± SD = 15.1 ± 1.7 × 4.9 ± 0.3 μm, L/W ratio = 3.04 on OA. Fungal DNA was isolated and used as template in PCR reactions using oligonucleotide primer pairs corresponding to the internal transcribed spacer (ITS) region, and a portion of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes. The resulting PCR fragments were sequenced and used as queries in BLASTN searches of the GenBank NR database. All of the amplified ITS DNA sequences (497 bp KF944356 and KF944357) were identical to Glomerella/Colletotrichum fioriniae (JN121190 and KF278459). Similarly, the amplified (672 bp) GAPDH sequences (KF944354 and KF944355) were 99.6% similar over the 254 bp overlapping with C. fioriniae (JQ948622). Pathogenicity of two randomly chosen C. fioriniae isolates, TR-123 and TR-126, was confirmed by placing 4.75 mm diam. inoculated agar plugs from 8-day-old fungal cultures or a sterile plug (negative control) at the base of an axenic young seedling ~1.5 to 6.5 cm in height with at least one set of true leaves (1). Each treatment was replicated five times. Acute wilt and blighting of leaves and production of orange acervuli on cotyledons disease symptoms developed by 3 weeks post inoculation (WPI). By 7 WPI all but one of the Colletotrichum-inoculated plants were dead, whereas all of the control plants were healthy with significantly lower area under the disease progress curve values. Colletotrichum was consistently re-isolated, and confirmed morphologically and molecularly, from six of seven diseased seedlings, whereas two of two randomly chosen control seedlings remained asymptomatic and did not yield Colletotrichum. In summary, C. fioriniae may represent a natural biocontrol agent against poison ivy and scale insect herbivores thereof. References: (1) E. Benhase and J. Jelesko. HortScience 48:1, 2013. (2) U. Damm et al. Stud. Mycol. 73:37, 2012. (3) J. Marcelino et al. J. Insect Sci. 9:25, 2009. (4) R. Shivas et al. Fungal Divers. 39:111.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge