Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2012-May

First Report of the Soybean Frogeye Leaf Spot Fungus (Cercospora sojina) Resistant to Quinone Outside Inhibitor Fungicides in North America.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
G Zhang
M Newman
C Bradley

Lykilorð

Útdráttur

Quinone outside inhibitor (QoI; also known as strobilurin) fungicides sometimes are applied to soybean (Glycine max) fields to help manage frogeye leaf spot of soybean (caused by Cercospora sojina) in the United States. In August 2010, soybean leaflets exhibiting severe frogeye leaf spot symptoms were collected from a field in Lauderdale County, TN that had been treated twice with pyraclostrobin during that growing season. The field had been planted into soybean annually since at least 2008, and a QoI fungicide had been applied to the field in each of those years. Fifteen single-spore isolates of C. sojina were recovered from the affected soybean leaflets. These isolates were identified as C. sojina based on the observed symptoms on the soybean leaflets and the morphology and size of conidiophores and conidia (3). In addition, DNA was extracted from the cultures, PCR amplification of the small subunit rDNA and internal transcribed spacer (ITS) region was conducted (2), and the resulting PCR product was sequenced at the Keck Biotechnology Center at the University of Illinois, Urbana. The resulting nucleotide sequences were compared with sequences deposited in the nucleotide database ( http://www.ncbi.nlm.nih.gov ) and showed highest homology to sequences of C. sojina. The isolates were tested for their sensitivity to technical-grade formulations of the QoI fungicides azoxystrobin, pyraclostrobin, and trifloxystrobin with an in vitro conidial germination assay with fungicide + salicylhydroxamic acid (SHAM)-amended potato dextrose agar as described by Bradley and Pedersen (1). The effective concentration at which 50% conidial germination was inhibited (EC50) was determined for all 15 C. sojina isolates, with mean values of 3.1644 (2.7826 to 4.5409), 0.3297 (0.2818 to 0.6404), and 0.8573 (0.3665 to 2.5119) μg/ml for azoxystrobin, pyraclostrobin, and trifloxystrobin, respectively. When compared with previously established mean EC50 values of C. sojina baseline isolates (4), EC50 values of the C. sojina isolates collected from the Lauderdale County, TN soybean field were approximately 249- to 7,144-fold greater than the EC50 values of the baseline isolates. These results indicate that all isolates recovered from the Lauderdale County, TN soybean field were highly resistant to QoI fungicides. To our knowledge, this is the first report of QoI fungicide resistance occurring in C. sojina, and surveys for additional QoI fungicide-resistant C. sojina isolates are needed to determine their prevalence and geographic distribution. In light of these findings, soybean growers in Tennessee and adjacent states should consider utilizing alternative frogeye leaf spot management practices such as planting resistant cultivars, rotating to nonhost crops, and tilling affected soybean residue (3). References: (1) C. A. Bradley and D. K. Pedersen. Plant Dis. 95:189, 2011. (2) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002. (3) D. V. Phillips. Page 20 in: Compendium of Soybean Diseases. 4th ed. G. L. Hartman et al., eds. The American Phytopathological Society, St. Paul, MN, 1999. (4) G. Zhang et al. Phytopathology (Abstr.) 100(suppl.):S145, 2010.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge