Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1991-Nov

Fluorescence Study of Chemical Modification of Phosphoenolpyruvate Carboxylase from Crassula argentea.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
P Rustin
C R Meyer
R T Wedding

Lykilorð

Útdráttur

The chemical modification of phosphoenolpyruvate carboxylase purified from Crassula argentea leaves was studied using the fluorescence of the extrinsic probe 8-anilino-1-naphalenesulfonate. The effects of ligands on kinetic parameters of phosphoenolpyruvate carboxylase activity, and its response to pH and metal cations, were associated with the binding of the ligands to the enzyme as measured by fluorescence. Binding of the ligands phosphoenolpyruvate, malate, and glucose-6-phosphate revealed by fluorescence measurements corresponds to competitive phenomena observed in kinetic studies. The fluorescence measurements also suggest the involvement of specific amino acids in the binding of a given ligand. Arginyl residues modified by 2,3-butanedione appear to be directly involved in the binding of phosphoenolpyruvate and malate to the active and the inhibition sites, respectively. A histidyl residue was involved in the binding of malate, accounting for the lack of inhibition by malate in kinetic studies of the enzyme treated with diethylpyrocarbonate. Although activity was lost, there was no decrease in the ability of the treated enzyme to bind phosphoenolpyruvate, suggesting that additional histidyl residues are essential for activity although not directly involved in the binding of phosphoenolpyruvate. The lysine reagent trinitrobenzenesulfonate caused a loss of activity and a reduction in malate inhibition and glucose-6-phosphate activation, but these modifications were not related to changes in the ability of the enzyme to bind any of the three ligands. This suggests that lysine residues were not directly involved in the binding of these ligands.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge