Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2013-Jan

Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Ji Yeon Jang
Ha Neui Kim
Yu Ri Kim
Young Whan Choi
Yung Hyun Choi
Jun Hyuk Lee
Hwa Kyoung Shin
Byung Tae Choi

Lykilorð

Útdráttur

BACKGROUND

Polygonum multiflorum has traditionally had wide use as an anti-aging treatment in East Asian countries. We investigated the neuroprotective effects of Polygonum multiflorum against glutamate-induced neurotoxicity with a focus on the anti-apoptotic mechanism in primary cultured cortical neurons.

METHODS

Cell viability, cytotoxicity, morphological, flow cytometry, Western blot, and caspase activity assays were performed for examination of the neuroprotective effects of active hexane extract from Polygonum multiflorum (HEPM).

RESULTS

Pretreatment with HEPM resulted in significantly decreased glutamate-induced neurotoxicity in a concentration-dependent manner and also resulted in drastically inhibited glutamate-induced apoptosis. Treatment with HEPM resulted in decreased expression of glutamate-induced death receptor (DR)4, and enhanced expression of glutamate-attenuated anti-apoptotic proteins, including Bcl-2, XIAP, and cIAP-1, and slightly reduced glutamate-induced cleavage of Bid. In addition, treatment with HEPM resulted in suppressed glutamate-induced activation of caspase-8, caspase-9, and caspase-3, and, subsequently, decreased degradation of poly(ADP-ribose) polymerase, β-catenin, and phospholipase Cγ1 protein, which are downstream targets of activated caspase-3.

CONCLUSIONS

The results of this study demonstrated that HEPM exerts a neuroprotective effect against glutamate-induced neurotoxicity via inhibition of apoptosis. This protection may be mediated through suppression of DR4 and up-regulation of Bcl-2, XIAP, and cIAP-1, as well as inhibition of caspase activation, resulting in prevention of apoptosis of cortical neurons.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge