Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2014-Jun

Impacts of dwarf mistletoe on the physiology of host Tsuga heterophylla trees as recorded in tree-ring C and O stable isotopes.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Danielle E Marias
Frederick C Meinzer
David R Woodruff
David C Shaw
Steven L Voelker
J Renée Brooks
Barbara Lachenbruch
Kristen Falk
Jennifer McKay

Lykilorð

Útdráttur

Dwarf mistletoes, obligate, parasitic plants with diminutive aerial shoots, have long-term effects on host tree water relations, hydraulic architecture and photosynthetic gas exchange and can eventually induce tree death. To investigate the long-term (1886-2010) impacts of dwarf mistletoe on the growth and gas exchange characteristics of host western hemlock, we compared the diameter growth and tree-ring cellulose stable carbon (C) and oxygen (O) isotope ratios (δ(13)Ccell, δ(18)Ocell) of heavily infected and uninfected trees. The relative basal area growth of infected trees was significantly greater than that of uninfected trees in 1886-90, but declined more rapidly in infected than uninfected trees through time and became significantly lower in infected than uninfected trees in 2006-10. Infected trees had significantly lower δ(13)Ccell and δ(18)Ocell than uninfected trees. Differences in δ(18)Ocell between infected and uninfected trees were unexpected given that stomatal conductance and environmental variables that were expected to influence the δ(18)O values of leaf water were similar for both groups. However, estimates of mesophyll conductance (gm) were significantly lower and estimates of effective path length for water movement (L) were significantly higher in leaves of infected trees, consistent with their lower values of δ(18)Ocell. This study reconstructs the long-term physiological responses of western hemlock to dwarf mistletoe infection. The long-term diameter growth and δ(13)Ccell trajectories suggested that infected trees were growing faster than uninfected trees prior to becoming infected and subsequently declined in growth and leaf-level photosynthetic capacity compared with uninfected trees as the dwarf mistletoe infection became severe. This study further points to limitations of the dual-isotope approach for identifying sources of variation in δ(13)Ccell and indicates that changes in leaf internal properties such as gm and L that affect δ(18)Ocell must be considered.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge