Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2013-Nov

Inhibition of Escherichia coli O157:H7 motility and biofilm by β-sitosterol glucoside.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Amit Vikram
G K Jayaprakasha
Ram M Uckoo
Bhimanagouda S Patil

Lykilorð

Útdráttur

BACKGROUND

Escherichia coli O157:H7 (EHEC) is a food borne pathogen, which causes diarrhea and hemolytic uremic syndrome (HUS). There is an urgent need of novel antimicrobials for treatment of EHEC as conventional antibiotics enhance shiga toxin production and potentiate morbidity and mortality.

METHODS

Six bioactive compounds were isolated, identified from citrus and evaluated for the effect on EHEC biofilm and motility. To determine the possible mode of action, a series of genes known to affect biofilm and motility were overexpressed and the effect on biofilm/motility was assessed. Furthermore, the relative expression of genes involved in motility and biofilm formation was measured by qRT-PCR in presence and absence of phytochemicals, to examine the repression caused by test compounds.

RESULTS

The β-sitosterol glucoside (SG) was identified as the most potent inhibitor of EHEC biofilm formation and motility without affecting the cell viability. Furthermore, SG appears to inhibit the biofilm and motility through rssAB and hns mediated repression of flagellar master operon flhDC.

CONCLUSIONS

SG may serve as novel lead compound for further development of anti-virulence drugs.

CONCLUSIONS

Plant sterols constitute significant part of diet and impart various health benefits. Here we present the first evidence that SG, a plant sterol has significant effect on EHEC motility, a critical virulence factor, and may have potential application as antivirulence strategy.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge