Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chest 2011-Feb

Lane-Hamilton syndrome: ferritin protects lung macrophages against iron and oxidation.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
H Lennart Persson
Linda K Vainikka
Hanna B Eriksson
Urban Wennerström

Lykilorð

Útdráttur

BACKGROUND

Lysosomal disruption and consequent apoptosis have been implicated in lung diseases characterized by iron overload. Free reactive iron in lysosomes sensitizes cells to oxidative stress. Apoptosis is prevented by heavy-chain (H)-ferritin, which can incorporate lysosomal iron into ferritin molecules. Tumor necrosis factor (TNF)-α stimulates the synthesis of H-ferritin. Idiopathic pulmonary hemosiderosis presents with the accumulation of iron and the upregulation of ferritin synthesis. We therefore analyzed the lysosomal response to oxidants and the role of H-ferritin synthesis in lung macrophages (LMs) harvested from the first Swedish case, to our knowledge, of Lane-Hamilton syndrome.

METHODS

Iron-exposed murine macrophages were used as a reference. Both cell types were stimulated with TNF-α (or not), then iron was assessed cytochemically and by atomic absorption spectrophotometry. H-ferritin expression was analyzed by Western blot and reduced glutathione (GSH) by spectrofluorometry. Following exposure to hydrogen peroxide, lysosomal membrane integrity and DNA degradation were analyzed by flow cytometry, whereas morphologic signs of apoptosis and necrosis were assessed by light microscopy.

RESULTS

GSH levels were approximately equal in LMs and murine macrophages. Although LMs contained much more iron than murine macrophages, lysosomal iron was bound in a harmless unreactive state by ample amounts of ferritin and hemosiderin, its lysosomal degradation product. Therefore, lysosomes of LMs were more oxidant resistant, and these cells were more adept at surviving oxidative stress. In both cell types, TNF-α prevented oxidant-induced lysosomal damage and cell death by upregulating synthesis of H-ferritin and GSH.

CONCLUSIONS

Iron-overloaded LMs are equipped with an efficient armor of antioxidative mechanisms of which H-ferritin and hemosiderin seem to be particularly important.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge