Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 2014-Oct

[NIR spectroscopy combined with stability and equivalence MW-PLS method applied to analysis of hyperlipidemia indexes].

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Jie-Mei Chen
Qing-Qing Xiao
Tao Pan
Xia Yan
Da-Wei Wang
Li-Jun Yao

Lykilorð

Útdráttur

Moving window partial least square (MW-PLS) method was improved by considering the stability and equivalence, and was used for the wavelength optimization of reagent-free near-infrared (NIR) spectroscopic analysis of total cholesterol (TC) and triglycerides (TG) for hyperlipidemia. A random and stability-dependent framework of calibration, prediction, and validation was proposed. From all human serum samples (negative 145 and positive 158, a total of 303 sample), 103 samples (negative 44 and positive 59) were randomly selected for the validation set, the remaining samples (negative 101 and positive 99, a total of 200 sample) were used as modeling set; then the modeling set was randomly divided into calibration set (negative 51 and positive 49, a total of 100 sample) and prediction set (negative 50 and positive 50, a total of 100 sample) by 50 times. To produce modeling stability, the model parameters were optimized based on the average prediction effect for all divisions; the optimized models were validated by using the validation samples. The obtained optimal MW-PLS wavebands were 1,556~1,852 nm for TC and 1,542-1,866 nm for TG. In order to solve the problem that instrument design typically involves some limitations of position and number of wavelengths because of cost and material properties, the equivalent model sets were proposed, and a unique public waveband 1,542-1,852 nm of the equivalent model sets for TC, TG was found. The validation results show that: using the optimal MW-PLS wavebands, validation samples' root mean square error of prediction (V SEP) for TC, TG were 0.177, 0.100 mmol · L(-1), the correlation coefficient of prediction (V_Rp) for TC, TG were 0.988, 0.996, and the sensitivity and specificity for hyperlipidemia achieved 95.0%, 90.5%, respectively; using the public equivalent wavebands, the V_SEP for TC, TG were 0.177, 0.101 mmol · L(-1)), the V_Rp for TC, TG were 0.988, 0.996, and the sensitivity and specificity achieved 92.7%, 90.3%, respectively.

CONCLUSIONS

NIR spectroscopy combined with the stability and equivalenceimprovement MW-PLS method can provide a potential tool for detecting hyperlipidemia for large population.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge