Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Science of Food and Agriculture 2019-Oct

Nanoencapsulation of synergistic antioxidant fruit and vegetable concentrates and their stability during in vitro digestion.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Su Jeong
Ji-Soo Lee
Hyeon Lee

Lykilorð

Útdráttur

Natural antioxidants have received increased attention owing to their safe use without side effects; however, their application has been limited because of lower antioxidant activity and stability during digestion when compared with those of synthetic antioxidants. Although research is ongoing to overcome these problems, it is still challenging to find effective solutions. In this study, we aimed to improve the properties and stability of natural antioxidants during in vitro digestion by synergistic combination and nanoencapsulation.Ten selected fruit and vegetable concentrates (acai berry, aronia, blackberry, cranberry, wild berry, raspberry, blueberry, red grape, cabbage, and spinach) were evaluated for their antioxidant capacity when combined via the oxygen radical absorbance capacity (ORAC) assay. Among the 45 combinations, the highest synergistic ORAC value was noted for the blueberry and cabbage concentrates (BUCA; 0.8 and 1.2 mg/mL) at an antioxidant ratio of 5:5. Chitosan/carrageenan (CSCR) nanoparticles are physically more stable than chitosan/gum arabic nanoparticles during in vitro digestion and were selected for the oral delivery of BUCA. Under simulated intestinal conditions, BUCA-loaded CSCR nanoparticles showed significantly more stable antioxidant activity and total phenolic content than non-nanoencapsulated BUCA. The highest antioxidant stability was observed in the BUCA-loaded CSCR nanoparticles prepared with 0.2 mg/mL carrageenan, which showed 2-times higher ORAC value and 10-times higher total phenolic content than non-nanoencapsulated BUCA after 12 h of in vitro digestion.CSCR nanoencapsulation of natural antioxidants could be an effective technique for improving antioxidant stability during digestion. This article is protected by copyright. All rights reserved.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge