Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2011-Sep

Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Jiali He
Jingjing Qin
Lingyun Long
Yonglu Ma
Hong Li
Ke Li
Xiangning Jiang
Tongxian Liu
Andrea Polle
Zongsuo Liang

Lykilorð

Útdráttur

To characterize the dynamics of Cd²⁺ flux in the rhizosphere and to study cadmium (Cd) plant-internal partitioning in roots, wood, bark and leaves in relation to energy metabolism, reactive oxygen species (ROS) formation and antioxidants, Populus × canescens plantlets were exposed to either 0 or 50 µM CdSO₄ for up to 20 days in the nutrient solution. A strong net Cd²⁺ influx in root apex was observed after Cd exposure for 24 h, even if net Cd²⁺ influx decreased gradually in roots. A large amount of Cd was accumulated in roots. Cd ions were uploaded via the xylem to leaves and further transported to the phloem where significant accumulation was detected. Cd accumulation led to decreased photosynthetic carbon assimilation but not to the depletion in soluble carbohydrates. Increased levels of ROS were present in all tissues, except the bark of Cd-exposed poplars. To combat Cd-induced superoxide and hydrogen peroxide, P. × canescens appeared to rely mainly on the formation of soluble phenolics as these compounds showed the highest accumulation in the bark and the lowest in wood. Other potential radical scavengers such as proline, sugar alcohols and antioxidant enzymes showed tissue- and exposure time-specific responses to Cd. These results indicate a complex pattern of internal Cd allocation in P. × canescens resulting in higher ROS stress in wood than in bark and intermediate responses in roots and leaves, probably because of differential capacities of these tissues for the production of protective phenolic compounds.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge