Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2007-Mar

Neural network analyses of infrared spectra for classifying cell wall architectures.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Maureen C McCann
Marianne Defernez
Breeanna R Urbanowicz
Jagdish C Tewari
Tiffany Langewisch
Anna Olek
Brian Wells
Reginald H Wilson
Nicholas C Carpita

Lykilorð

Útdráttur

About 10% of plant genomes are devoted to cell wall biogenesis. Our goal is to establish methodologies that identify and classify cell wall phenotypes of mutants on a genome-wide scale. Toward this goal, we have used a model system, the elongating maize (Zea mays) coleoptile system, in which cell wall changes are well characterized, to develop a paradigm for classification of a comprehensive range of cell wall architectures altered during development, by environmental perturbation, or by mutation. Dynamic changes in cell walls of etiolated maize coleoptiles, sampled at one-half-d intervals of growth, were analyzed by chemical and enzymatic assays and Fourier transform infrared spectroscopy. The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans, and mixed-linkage (1 --> 3),(1 --> 4)-beta-D-glucans, together with smaller amounts of glucomannans, xyloglucans, pectins, and a network of polyphenolic substances. During coleoptile development, changes in cell wall composition included a transient appearance of the (1 --> 3),(1 --> 4)-beta-D-glucans, a gradual loss of arabinose from glucuronoarabinoxylans, and an increase in the relative proportion of cellulose. Infrared spectra reflected these dynamic changes in composition. Although infrared spectra of walls from embryonic, elongating, and senescent coleoptiles were broadly discriminated from each other by exploratory principal components analysis, neural network algorithms (both genetic and Kohonen) could correctly classify infrared spectra from cell walls harvested from individuals differing at one-half-d interval of growth. We tested the predictive capabilities of the model with a maize inbred line, Wisconsin 22, and found it to be accurate in classifying cell walls representing developmental stage. The ability of artificial neural networks to classify infrared spectra from cell walls provides a means to identify many possible classes of cell wall phenotypes. This classification can be broadened to phenotypes resulting from mutations in genes encoding proteins for which a function is yet to be described.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge