Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2017-Jan

Neuroprotective effects of 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside from Polygonum multiflorum against glutamate-induced oxidative toxicity in HT22 cells.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Sun Young Lee
Sung Min Ahn
Ziyu Wang
Young Whan Choi
Hwa Kyoung Shin
Byung Tae Choi

Lykilorð

Útdráttur

BACKGROUND

Since ancient times, Polygonum multiflorum Thunb. has been used to treat premature grey hair, dizziness, and blurred vision in East Asia. A major bioactive constituent of this medicinal herb, 2,3,5,4'-tetrahydoxystilbene-2-O-β-D-glucoside (THSG), has antioxidant activity and exerts beneficial effects on cognition and memory.

OBJECTIVE

The purpose of the current study was to determine if THSG affects hippocampal neuronal cell death and mitochondrial function following exposure to oxidative stress.

METHODS

HT22 hippocampal cells with or without THSG pretreatment were exposed to glutamate, and the effects on cell viability and expression of molecules related to apoptotic cell death were examined using biochemical techniques, flow cytometry, western immunoblotting, and real-time polymerase chain reaction.

RESULTS

Pretreatment with THSG significantly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase as well as apoptotic cell death. THSG inhibited generation of reactive oxygen species (ROS), expression of heme oxygenase-1, and activation of caspase-3 and calpain-1 proteases, all of which were increased by glutamate. THSG inhibited glutamate-induced disruption of mitochondrial membrane potential (MMP) and voltage-dependent anion channel-1. It also regulated the ratio of Bax to Bcl-2.

CONCLUSIONS

These results indicate that THSG has a marked neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. These findings suggest the potential of THSG as a new therapeutic agent for the treatment of cognitive disorders.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge