Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2010-Dec

Perturbed heme binding is responsible for the blistering phenotype associated with mutations in the Caenorhabditis elegans dual oxidase 1 (DUOX1) peroxidase domain.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Jennifer L Meitzler
Relly Brandman
Paul R Ortiz de Montellano

Lykilorð

Útdráttur

Dual oxidase (DUOX) enzymes support a wide variety of essential reactions, from cellular signaling to thyroid hormone biosynthesis. In Caenorhabditis elegans, the DUOX system (CeDUOX1/2) plays a crucial role in innate immunity and in stabilizing the cuticle by forming tyrosine cross-links. The current model suggests that superoxide generated by CeDUOX1 at the C-terminal NADPH oxidase domain is rapidly converted to H(2)O(2). The H(2)O(2) is then utilized by the N-terminal peroxidase-like domain to cross-link tyrosines. We have now created a series of mutations in the isolated peroxidase domain, CeDUOX1(1-589). One set of mutations investigate the roles of a putative distal tyrosine (Tyr(105)) and Glu(238), a proposed covalent heme-binding residue. The results confirm that Glu(238) covalently binds to the heme group. A second set of mutations (G246D and D392N) responsible for a C. elegans blistering cuticle phenotype was also investigated. Surprisingly, although not among the catalytic residues, both mutations affected heme co-factor binding. The G246D mutant bound less total heme than the wild type, but a higher fraction of it was covalently bound. In contrast, the D392N mutant appears to fold normally but does not bind heme. Molecular dynamics simulations of a CeDUOX1(1-589) homology model implicate displacements of the proximal histidine residue as the likely cause. Both enzymes are structurally stable and through altered heme interactions exhibit partial or complete loss of tyrosine cross-linking activity, explaining the blistering phenotype. This result argues that the CeDUOX peroxidase domain is primarily responsible for tyrosine cross-linking.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge