Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Medicine Reports 2012-Jul

Phosphoproteomic analysis of electroacupuncture analgesia in an inflammatory pain rat model.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Si-Hyoung Lee
Sun-Young Kim
Ji-Hwan Kim
Hye-Yun Jung
Jeong-Hee Moon
Kwang-Hee Bae
Byung-Tae Choi

Lykilorð

Útdráttur

The phosphorylation changes of nociceptive signaling proteins in the spinal cord dorsal horn (SCDH) are important in creating exaggerated pain following peripheral inflammation. Electroacupuncture (EA) has been widely used to relieve acute and chronic inflammatory pain in human and experimental pain models. In the present study, we performed a phosphoproteomic analysis to investigate whether EA alters protein phosphorylation in SCDH to attenuate pain development. Inflammatory hyperalgesia was induced by intraplantar injection of complete Freund's adjuvant (CFA) into the rat hind paw. EA treatment at ST36 and SP6 acupoints alleviated thermal hyperalgesia of the CFA-induced inflammatory pain model rats. The SCDH proteins from the control, inflammatory pain model and EA treatment rats were separated by 2-dimensional gel electrophoresis and the alterations in phosphoproteins were detected by Pro-Q Diamond staining. Eight proteins were differentially phosphorylated following EA treatment in the inflammatory pain model. Aldolase C, nascent polypeptide-associated complex α, stress-induced phosphoprotein 1 and heat shock protein 90 were identified as phosphoproteins whose expression was increased, whereas GDP dissociation inhibitor 1, thiamine triphosphatase, phosphoglycerate kinase 1 and 14-3-3 γ were phosphoproteins whose expression was decreased. This is the first phosphoproteomic screening study to elucidate the working mechanisms of EA analgesia. The results suggest that the regulation of cellular pathways in which the identified proteins are involved may be associated with an EA analgesic mechanism.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge