Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genetics and Molecular Research 2017-Aug

Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
R M O Pires
M A B Àvila
D G Leite
H O Santos
G A Souza
E V R Von Pinho

Lykilorð

Útdráttur

With the imminence of global climate changes that affect the temperature and the rainfall uniformity, it is growing the concern about the adaptation of crops to the water deficit. Thus, the objective of this study was to evaluate alterations in physiological and enzymatic mechanisms during the germination process of sesame seeds under different water availability. To simulate the water restriction we used PEG6000, a high molecular weight molecule that does not penetrate the seed structure but allows different osmotic potentials. The treatments were -0.1, -0.2, and -0.3 MPa, and the control. Germination, first-count germination, germination velocity index, and length and dry mass of the hypocotyl and radicle were performed. The seeds were weighed before and after treatments every 3 h. After each weighing, 100 seeds were taken for analysis of the enzymes alcohol dehydrogenase (ADH), malate dehydrogenase, esterase, catalase (CAT), superoxide dismutase (SOD), isocitrate lyase (ICL), and glutamate dehydrogenase (GTDH). The statistical design was completely randomized with five replications. PEG6000 prolonged ADH activity during the beginning of germination, maintaining the anaerobic metabolism for longer. Subsequently, their activity was reduced, as well as ICL, favoring the deterioration of the seeds that take the time to germinate. Behavior was evidenced by the appearance of SOD, CAT, and GTDH isoforms after 24 h of imbibition when water restriction was imposed. Therefore, the PEG600 is efficient in simulating water deficit conditions in future scenarios of climate change, offering impotent information regarding the germination behavior of the plants under these conditions.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge