Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2018-Dec

Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz).

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Zhongying Shan
Xinglu Luo
Maogui Wei
Tangwei Huang
Aziz Khan
Yanmei Zhu

Lykilorð

Útdráttur

Drought stress is one of the potent abiotic stress limiting cassava (Manihot esculenta) yield globally, but studies addressing both physiological and proteomic responses that how cassava crops can adjust their growth and metabolism under drought conditions are lacking. Combining leaf physiological and proteomic characteristics strongly allied with drought tolerance should results in enhanced drought tolerance in cassava crop. Therefore, the aims of this study were to explore the plant physiological and proteomic mechanisms involved in drought adaptation in cassava. Xinxuan 048 (XX048) was exposed to well-watered control (CK, relative soil water content (RSWC) as 80 ± 5%), mild drought stress (LD, RSWC as 65 ± 5%), moderate drought stress (MD, RSWC as 50 ± 5%) and severe drought stress (SD, RSWC as 35 ± 5%) from 30 days after planting. Under drought stress conditions, cassava plant showed a substantial decline in plant height, stem diameter, leaf number, leaf water content, the ratio of free water content to bound water content of leaf (FW/BW), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs) and transpiration rate (Tr) compared with well watered plants. However, compared with control, leaf water content, SPAD value, cell membrane permeability, malondialdehyde (MDA), soluble sugar, protein proline content SOD and CAT activity were at peak under drought stress. The proteomic analysis revealed that among 3 339 identified proteins, drought stress increased and decreased abundance of 262 and 296 proteins, respectively, compared with control condition. These proteins were involved in carbohydrate energy metabolism, protein homeostasis, transcription, cell structure, cell membrane transport, signal transduction, stress and defense responses. These data not only provides a comprehensive dataset on overall proteomic changes in cassava leaves under drought stress, but also highlights the mechanisms by which euphorbiaceae plants can adapt to drought conditions.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge