Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2019-Nov

Pre-treatment of two contrasting water-stressed genotypes of cassava (Manihot esculenta Crantz) with ascorbic acid. I. Growth, physiological and antioxidant responses.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Omolara Ibrahim
Jelili Opabode

Lykilorð

Útdráttur

Water deficit-stress at early growth stage is a major constraint of cassava production. Ascorbic acid is a non-enzymatic antioxidant that mitigates oxidative damage caused by water stress in plants. Growth, physiological and antioxidant defense system responses of two contrasting water-stressed cassava genotypes to pre-treatment with foliar application of ascorbic acid (AA) were investigated. The objectives of this study were to assess the growth, proline, photosynthesis pigments and antioxidant activities of young water-stressed cassava plants pre-treated with ascorbic acid. The study consisted of IITA-TMS-IBA980581 (drought tolerant) and IITA-TMS-IBA010040 (drought sensitive) cassava genotypes treated with six doses (0.00, 0.25, 0.50, 0.75 and 1.00 mM) of AA before being subjected to water deficit (45.0% field capacity) and a water sufficient AA-untreated control. In both genotypes, water stress reduced shoot height (40.3%), leaf area (42.5%), and number of root (54.5%), biomass (28.6%), relative water content (RWC, 3.2%) and photosynthetic pigments (300.0%). However, water stress increased proline (91.3%), endogenous AA (112.0%), catalase (CAT, 300.0%) and superoxide dismutase (SOD, 15.3%) in both genotypes. Compared with IITA-TMS-IBA010040, leaf area, biomass, number of root and shoot height of IITA-TMS-IBA980581 were higher by 7.3, 24.6, 25.9 and 13.1%, respectively. By less than a quarter, chlorophylls a and b, activity of superoxide dismutase and relative water content of IITA-TMS-IBA980581 were higher compared with IITA-TMS-IBA010040. However, proline content of IITA-TMS-IBA010040 was higher than IITA-TMS-IBA980581 by 14.3%. Pre-treatment with AA improved growth parameters, photosynthetic pigments, RWC, endogenous AA, activity of CAT and SOD, but decreased proline in both genotypes with an optimum concentration at 0.5 mM. Pre-treatment with 0.5 mM AA increased shoot height, area of leaves, leaf number, number of root and dry weight by 46.3, 44.7, 14.4, 88.2 and 37.5%, respectively. Pre-treatment with 0.5 mM AA doubled chlorophylls, tripled carotenoids content, doubled endogenous AA and slightly enhanced RWC (2.1%) and SOD (2.0%) when compared with AA-untreated water stressed plants. But pre-stress application of AA reduced proline content by one-fold, increased CAT activity by one-fold in IITA-TMS-IBA980581 and by one-third in IITA-TMS-IBA010040. The study concluded that pre-treatment of cassava young plants with AA before water deficit could alleviate oxidative stress.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge