Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2005-Jun

Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Małgorzata Garnczarska

Lykilorð

Útdráttur

The response of the enzymes and metabolites of the ascorbate-glutathione pathway to oxidative stress caused by re-aeration following hypoxia was studied in roots of hydroponically grown lupine (Lupinus luteus L. cv. Juno) seedlings. Lupine roots were deprived of oxygen by subjecting them to hypoxia for 48 and 72 h and then re-aerated for up to 4 h. An increased content of total ascorbate was observed in lupine roots immediately after hypoxia, whereas total glutathione level decreased. However, a significant increase in the reduced forms of both metabolites was found directly after hypoxia. Re-admission of oxygen caused the decrease of the ratios of reduced to oxidized forms of ascorbate and glutathione, indicating oxidative stress. While monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activity remained unaltered during re-aeration the increase in activities of ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) was observed 30 min after transfer from hypoxic condition. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity approached the control level during a whole re-aeration period. Native gel electrophoresis combined with specific activity staining revealed seven isoforms of APX, five isoforms of GR and three different proteins with DHA reductase activity in roots extracts. However, immediately after hypoxic treatment APX-5 isoform and GR-1 isoform were not observed in roots. This experimental system was also used to investigate superoxide anion level in roots utilizing the superoxide anion-specific indicator dihydroethidium (DHE). Intense DHE-derived fluorescence was found in re-aerated root tips as compared to control roots, indicating that re-aeration induced superoxide anion production in hypoxically pretreated roots.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge