Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Society Transactions 2002-Apr

Role of thrombin and its major cellular receptor, protease-activated receptor-1, in pulmonary fibrosis.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
D C Howell
G J Laurent
R C Chambers

Lykilorð

Útdráttur

Pulmonary fibrosis is the end stage of a heterogeneous group of disorders and is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium. There is increasing evidence from a number of studies that activation of the coagulation cascade, with the resultant generation of coagulation proteases, plays a central role in fibrotic lung disease that is associated with acute and chronic lung injury. Consistent with this finding, levels of thrombin are increased in bronchoalveolar lavage fluid from patients and in animal models of this disorder. In addition to its classical role in blood coagulation, thrombin exerts a number of proinflammatory and profibrotic cellular effects in vitro that are critically important in tissue repair processes. These cellular effects are predominantly mediated via proteolytic activation of the major thrombin receptor protease-activated receptor-1 (PAR-1). This has led us to hypothesize that the procoagulant and the downstream cellular effects of thrombin, which are initiated following receptor activation, may be important in promoting tissue fibrosis in vivo. To examine this hypothesis, we assessed the effect of a direct thrombin inhibitor in bleomycin-induced pulmonary fibrosis in rats. Immunohistochemical studies showed that expression of thrombin and PAR-1 in lung tissue increased dramatically after intratracheal instillation of bleomycin, compared with saline-treated animals. After bleomycin instillation, there was a doubling in the amount of lung collagen after 14 days, which was preceded by elevations in alpha(1)(I) procollagen and connective tissue growth factor (CTGF) mRNA levels. However, when bleomycin-treated animals concurrently received a continuous infusion of a direct thrombin inhibitor at an anticoagulant dose, lung collagen accumulation in response to bleomycin was attenuated by up to 40%. Furthermore, alpha(1)(I) procollagen and CTGF mRNA levels were also significantly reduced in these animals. These findings confirm that thrombin is a key mediator in the pathogenesis of this condition and suggest that the cellular effects of thrombin may be critically important in promoting lung collagen accumulation in this experimental model of pulmonary fibrosis. Targeting the profibrotic effects of coagulation proteases warrants further evaluation as a potential therapeutic strategy for fibrotic lung disease.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge