Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Global Change Biology 2019-05

Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Yongshuo Fu
Shilong Piao
Xuancheng Zhou
Xiaojun Geng
Fanghua Hao
Yann Vitasse
Ivan Janssens

Lykilorð

Útdráttur

Leaf phenology is one of the most reliable bioindicators of ongoing global warming in temperate and boreal zones because it is highly sensitive to temperature variation. A large number of studies have reported advanced spring leaf-out due to global warming, yet the temperature sensitivity of leaf-out has significantly decreased in temperate deciduous tree species over the past three decades. One of the possible mechanisms is that photoperiod is limiting further advance to protect the leaves against potential damaging frosts. However, the "photoperiod limitation" hypothesis remains poorly investigated and experimentally tested. Here, we conducted a photoperiod- and temperature-manipulation experiment in climate chambers on two common deciduous species in Europe: Fagus sylvatica (European beech, a typically late flushing species) and Aesculus hippocastanum (horse chestnut, a typically early flushing species). In agreement with previous studies, we found that the warming significantly advanced the leaf-out dates by 4.3 and 3.7 days/°C for beech and horse chestnut saplings, respectively. However, shorter photoperiod significantly reduced the temperature sensitivity of beech only (3.0 days/°C) by substantially increasing the heat requirement to avoid leafing-out too early. Interestingly, the photoperiod limitation only occurs below a certain daylength (photoperiod threshold) when the warming increased above 4°C for beech trees. In contrast, for chestnut, no photoperiod threshold was found even when the ambient air temperature was warmed by 5°C. Given the species-specific photoperiod effect on leaf phenology, the sequence of the leaf-out timing among forest tree species may change under future climate warming conditions. Nonphotoperiodic species may benefit from warmer springs by starting the growing season earlier than photoperiodic sensitive species, modifying forest ecosystem structure and functions, but this photoperiod limitation needs to be further investigated experimentally in numerous species.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge