Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2016-Dec

Structure characterization of two novel polysaccharides isolated from the spikes of Prunella vulgaris and their anticomplement activities.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Dongsheng Du
Yan Lu
Zhihong Cheng
Daofeng Chen

Lykilorð

Útdráttur

BACKGROUND

The spikes of Prunella vulgaris have long been used as a traditional Chinese medicine to treat various inflammation-related diseases. The aim of this study was to isolate and characterize homogenous polysaccharides from this herb and to evaluate their anticomplement activity.

METHODS

Anticomplement activity-guided fractionation of the hot water extract of P. vulgaris was performed by DEAE-cellulose and size-exclusion chromatography, yielding two homogeneous polysaccharides PW-PS1 and PW-PS2. The homogeneity, molecular weight, monosaccharide composition and linkage of the two polysaccharides were determined in addition to other chemical characterizations. The anticomplement activity of the polysaccharides was evaluated and expressed as 50% hemolytic inhibition concentration through the classical pathway (CH50 value) and alternative pathway (AP50 value). The preliminary mechanism for the complement activation cascade was also assessed.

RESULTS

PW-PS1 and PW-PS2 were both branched acidic polysaccharides. PW-PS1 was composed of Ara, Xyl, and 4-methoxy-Glc A in a ratio of 1.0: 2.6: 0.8. The main linkages of the sugar residues of PW-PS1 included terminal β-d-Xylp, 1,4-linked β-d-Xylp, 1,3-linked α-d-Arap, 1,3,5-linked α-d-Arap, and terminal 4-methoxy-α-d-Glcp A. PW-PS2 was composed of Rha, Ara, Xyl, Gal, and Gal A in a ratio of 0.6: 1.0: 1.3: 1.8: 3.4. The main linkages between the sugar residues of PW-PS2 included terminal Araf, 1,4-linked β-d-Xylp, 1,3-linked α-d-Rhap, terminal α-d-Galp, and 1,4,6-linked α-d-Galp. PW-PS1 and PW-PS2 inhibited complement activation through both the classical and alternative pathways with CH50 values of 0.28 and 0.13mg/mL, respectively, and AP50 values of 0.40 and 0.35mg/mL, respectively. Preliminary mechanism studies using complement component-depleted sera showed that PW-PS1 acted on the C1q, C3, and C9 components and that PW-PS2 acted on the C1q, C2, C3, C5, and C9 components.

CONCLUSIONS

Our study suggested that PW-PS1 and PW-PS2 could be valuable for the treatment of diseases associated with the excessive activation of the complement system.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge