Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2018-Mar

Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Hirokazu Takahashi
Qi Xiaohua
Satoshi Shimamura
Asako Yanagawa
Susumu Hiraga
Mikio Nakazono

Lykilorð

Útdráttur

UNASSIGNED

Soil waterlogging often causes oxygen deficiency in the root systems of plants and severely inhibits plant growth. Formation of aerenchyma - interconnected spaces that facilitate the movement of gases between and within the aerial and submerged parts of plants - is an adaptive trait for coping with waterlogged conditions. Soybean (Glycine max) forms porous secondary tissues known as aerenchymatous phellem (AP), which are derived from the outermost cell layer of phellogen. To understand what factors other than waterlogging are involved in phellogen and AP formation, we examined how their formation in soybean seedlings was affected by darkness, CO2 deficiency and blockage of phloem transport.

UNASSIGNED

Aerenchymatous phellem and phellogen formation were expressed as area ratios in cross-sections of hypocotyl. CO2 was depleted by use of calcium oxide and sodium hydroxide. Phloem transport was blocked by heat-girdling of hypocotyls. Sucrose levels were measured by spectrophotometry.

UNASSIGNED

Under light conditions, waterlogging induced the accumulation of high concentrations of sucrose in hypocotyls, followed by phellogen and AP formation in hypocotyls. Phellogen formation and AP formation were inhibited by darkness, CO2 deficiency and blockage of phloem transport. Phellogen formation and AP formation were also inhibited by excision of shoots above the epicotyl, but they recovered following application of sucrose (but not glucose or fructose application) to the cut surface.

UNASSIGNED

The results demonstrate that sucrose derived from leaves is essential for AP and phellogen formation in soybean hypocotyls under waterlogged soil conditions. Maintenance of a high sucrose concentration is thus essential for the development of phellogen and AP and the differentiation of phellogen to AP.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge