Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular NMR 2003-Mar

Suitability of binary mixtures of water with aprotic solvents to turn hydroxyl protons of carbohydrate ligands into conformational sensors in NOE and transferred NOE experiments.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Hans-Christian Siebert
Sabine André
Johannes F G Vliegenthart
Hans-Joachim Gabius
Michael J Minch

Lykilorð

Útdráttur

The structural analysis of protein-carbohydrate interactions is essential for the long-range aim to sort out entropic/ enthalpic factors in the binding process. Of conspicuous clinical interest, this work can also offer the perspective to devise new classes of therapeuticals which interfere with disease-related glycan recognition. We have shown that it is possible to use exchangeable hydroxyl protons of carbohydrate ligands as conformational sensors for defining their bound-state topology by measurements in dimethyl sulfoxide(d6) (Siebert et al. (2000) ChemBioChem, 1, 181-195). However, the proteins are required to maintain binding capacity in the aprotic solvent. To define conditions to limit its harmful effect on sensitive protein structures while still being able to pick up solvent-exchangeable hydroxyl signals we systematically tested binary solvent mixtures of dimethyl sulfoxide and acetone with water. These solvent mixtures did not preclude to monitor hydroxyl protons of carbohydrate ligands even at temperatures well above 0 degrees C. Notably, hydrogen bonding of the two tested disaccharides (Galbeta1-4Glcalpha/beta and Galalpha1-3Galalpha/beta or Galalpha1-3Galbeta1-OCH(3)), which are common lectin ligands, resembled the situation under physiological conditions. Also, a refined topological description for hydroxyl positioning could be achieved for Galalpha1-3Gal. At least equally important, this approach worked for elucidation of the mistletoe-lectin-bound topology of lactose in its syn-conformation with indication for formation of a characteristic interresidual hydrogen bond. These measurements were performed in a binary dimethyl sulfoxide(d6):water mixture (6:4 ratio, v/v) at -12 degrees C and encourage to pursue this line of investigation by monitoring in the course of stepwise temperature increases. Our experiments reveal that binary mixtures have favorable properties for the conformational analysis of the free- and bound-state topologies of bioactive ligands.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge