Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry 2018-05

Synthesis and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Bunta Watanabe
Hiroaki Kirikae
Takao Koeduka
Yoshinori Takeuchi
Tomoki Asai
Yoshiyuki Naito
Hideya Tokuoka
Shinri Horoiwa
Yoshiaki Nakagawa
Bun-Ichi Shimizu

Lykilorð

Útdráttur

4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the regulatory position of 4CL in the phenylpropanoid pathway renders the enzyme an attractive target that controls the composition of phenylpropanoids in plants. In this study, we designed and synthesized mechanism-based inhibitors for 4CL in order to develop useful tools for the investigation of physiological functions of 4CL and chemical agents that modulate plant growth with the ultimate goal to produce plant biomass that exhibits features that are beneficial to humans. The acylsulfamide backbone of the inhibitors in this study was adopted as a mimic of the acyladenylate intermediates in the catalytic reaction of 4CL. These acylsulfamide inhibitors and the important synthetic intermediates were fully characterized using two-dimensional NMR spectroscopy. Five 4CL proteins with distinct substrate specificity from four plant species, i.e., Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), and Petunia hybrida (petunia), were used to evaluate the inhibitory activity, and the half-maximum inhibitory concentration (IC50) of each acylsulfamide in the presence of 4-coumaric acid (100 µM) was determined as an index of inhibitory activity. The synthetic acylsulfamides used in this study inhibited the 4CLs with IC50 values ranging from 0.10 to 722 µM, and the IC50 values of the most potent inhibitors for each 4CL were 0.10-2.4 µM. The structure-activity relationship observed in this study revealed that both the presence and the structure of the acyl group of the synthetic inhibitors strongly affect the inhibitory activity, and indicates that 4CL recognizes the acylsulfamide inhibitors as acyladenylate mimics.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge