Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Physiology 1983-Aug

The respiration-linked limiting step of tumor cell transition from the non-cycling to the cycling state: its inhibition by oxidizable substrates and its relationships to purine metabolism.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
M Olivotto
R Caldini
M Chevanne
M G Cipolleschi

Lykilorð

Útdráttur

The recruitment into the cycling state of resting Yoshida AH 130 hepatoma cells was studied with respect to its dependence on respiration in an experimental system wherein the overall energy requirement for this recruitment can be supplied by the glycolytic ATP. The G1-S transition of these cells, unaffected by 2,4-dinitrophenol (DNP) at concentrations which uncouple the respiratory phosphorylation, is impaired either by blocking the electron flow to oxygen by antimycin A or by adding an excess of some oxidizable substrates, chiefly pyruvate and oxalacetate. An experimental analysis, focused on pyruvate activity, showed that the inhibition of cell recruitment into S is not related to the depressing effects of this substrate on aerobic glycolysis of tumor cells, nor is it modified by forcing, in the presence of DNP, pyruvate oxidation through the tricarboxylic acid cycle as well as the overall oxygen consumption. Addition of suitable concentrations of preformed purine bases (mainly adenine), completely removes the block of the G1-S transition produced either by the excess of oxidizable substrates or by antimycin A. These findings indicate the existence of a respiration-linked step in purine metabolism, which restricts the above transition and is equally impaired by blocking the respiratory chain or by saturating it with an excess of reducing equivalents derived from unrelated oxidations. The inhibitory effects of pyruvate and antimycin A can be largely removed by the addition of folate and tetrahydrofolate, suggesting that the respiration-linked restriction point of tumor cell cycling involves the folate metabolism and its connections to purine synthesis.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge