Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PeerJ 2019

The response of fine root morphological and physiological traits to added nitrogen in Schrenk's spruce (Picea schrenkiana) of the Tianshan mountains, China.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Lu Gong
Jingjing Zhao

Lykilorð

Útdráttur

Fine roots are essential for water and nutrient uptake in plants, but little is known about the variation in fine root traits and the underlying mechanisms that drive it. Understanding the responses of fine root function traits to changing environmental conditions and the role of fine root traits as drivers of forest ecosystem processes are critical for informing physiological and ecological theory as well as ecosystem management. We measured morphological and physiological traits of fine roots from six soil layers and three diameter classes in Schrenk's spruce (Picea shrenkiana) forests of the Tianshan mountains, China. We found significant effects of nitrogen addition on these morphological and physiological traits, which varied by soil layer and root diameter. Specifically, specific root length (SRL) was higher in medium N addition group (N2) than in control group (N0). Specific root area (SRA) was higher in the control group (N0) than fertilized groups (N1, N2 and N3). Root tissue density (RTD) was higher in low N addition group (N1) than in the other group. Root dry matter content had no significant difference among four treatment groups. SRL, SRA, and RTD of fine roots in different diameter classes were all significantly different between high N addition (N3) and the control (N0) groups. The physiological characteristics of fine roots showed that soluble sugar (SS), fine root vitality (FRV), and tissue water content (TWC) in different soil layers were higher in the control group than in the fertilized groups. While soluble protein (SP), malondialdehyde (MDA) and free proline (FP) were lower in the control group (N0) than in the fertilized groups. In addition, SS, FRV, SP, TWC, FP, and MDA in all N addition treatments groups were significantly different from the control group. Fine root morphological traits were closely related to physiological traits, and added nitrogen inputs change these correlations. Our study confirms that nitrogen addition has specific effects on the morphological and physiological traits of fine roots of Schrenk's spruce, and the effects of N addition vary according to the amount added.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge