Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2004-Apr

Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Jane Larkindale
Bingru Huang

Lykilorð

Útdráttur

This study investigated whether pre-treating plants with specific putative signaling components and heat acclimation would induce tolerance of a cool-season grass, creeping bentgrass (Agrostis stolonifera var. palustris), to subsequent heat stress and whether thermotolerance induction of those pretreatments was associated with the regulation of antioxidant regenerating enzymes. The treatments included foliar application of salicylic acid (SA), abscisic acid (ABA), calcium chloride (CaCl2), hydrogen peroxide (H2O2), 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of ethylene prior to the exposure of plants to heat stress (35 degrees C) in a growth chamber. Physiological measurements including turf quality, leaf photosynthetic rate, and levels of oxidative damage demonstrated that all treatments increased heat tolerance. The better heat tolerance for pre-treated plants as compared to controls was related to the protection of oxidative damage under heat stress. APX activity increased over the first 2 days and 5 days of heating for ACC and CaCl2 respectively, but for only 12 h for H2O2. SA and ABA pre-treatments had no effects on APX activity earlier, but maintained APX activity at a significantly higher level than in controls after 24 h of heating. SA and ABA pre-treatments had no effects on POX activity. ACC treatment significantly increased POX activity. Pre-treatment with CaCl2, H2O2, and HA reduced POX activity, particularly during the later phase of heating. Plants treated with SA, CaCl2, H2O2 and HA had lower CAT activity than their control plants prior to heating and within 48 h of heat stress. ABA and ACC pre-treatments maintained higher CAT activity than the controls after 48 h of heating. ACC, CaCl2, or HA pre-treatments increased SOD activity only before 5 days of heat stress. SA and ABA pre-treatments had less effect on APX activity earlier under heat stress. These results suggest that specific groups of potential signaling molecules may induce tolerance of creeping bentgrass to heat stress by reducing oxidative damage.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge