Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Artificial Intelligence in Medicine 2014-Jan

White box radial basis function classifiers with component selection for clinical prediction models.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Vanya Van Belle
Paulo Lisboa

Lykilorð

Útdráttur

OBJECTIVE

To propose a new flexible and sparse classifier that results in interpretable decision support systems.

METHODS

Support vector machines (SVMs) for classification are very powerful methods to obtain classifiers for complex problems. Although the performance of these methods is consistently high and non-linearities and interactions between variables can be handled efficiently when using non-linear kernels such as the radial basis function (RBF) kernel, their use in domains where interpretability is an issue is hampered by their lack of transparency. Many feature selection algorithms have been developed to allow for some interpretation but the impact of the different input variables on the prediction still remains unclear. Alternative models using additive kernels are restricted to main effects, reducing their usefulness in many applications. This paper proposes a new approach to expand the RBF kernel into interpretable and visualizable components, including main and two-way interaction effects. In order to obtain a sparse model representation, an iterative l1-regularized parametric model using the interpretable components as inputs is proposed.

RESULTS

Results on toy problems illustrate the ability of the method to select the correct contributions and an improved performance over standard RBF classifiers in the presence of irrelevant input variables. For a 10-dimensional x-or problem, an SVM using the standard RBF kernel obtains an area under the receiver operating characteristic curve (AUC) of 0.947, whereas the proposed method achieves an AUC of 0.997. The latter additionally identifies the relevant components. In a second 10-dimensional artificial problem, the underlying class probability follows a logistic regression model. An SVM with the RBF kernel results in an AUC of 0.975, as apposed to 0.994 for the presented method. The proposed method is applied to two benchmark datasets: the Pima Indian diabetes and the Wisconsin Breast Cancer dataset. The AUC is in both cases comparable to those of the standard method (0.826 versus 0.826 and 0.990 versus 0.996) and those reported in the literature. The selected components are consistent with different approaches reported in other work. However, this method is able to visualize the effect of each of the components, allowing for interpretation of the learned logic by experts in the application domain.

CONCLUSIONS

This work proposes a new method to obtain flexible and sparse risk prediction models. The proposed method performs as well as a support vector machine using the standard RBF kernel, but has the additional advantage that the resulting model can be interpreted by experts in the application domain.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge