Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Oncology 2020

Antitumor Activity of Ficus deltoidea Extract on Oral Cancer: An In Vivo Study.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
May Al-Koshab
Aied Alabsi
Marina Bakri
Rola Ali-Saeed
Manimalar Naicker

Lykilorð

Útdráttur

Background
The aim of this study is to evaluate the chemopreventive and chemotherapeutic activities of Ficus deltoidea (FD) in an animal model induced for oral cancer using 4-nitroquinoline-1-oxide (4NQO).

Methods
Male Sprague-Dawley (SD) rats were randomized into six groups (n = 7 per group): Group 1 (untreated group); Group 2 (control cancer group) received 4NQO only for 8 weeks in their drinking water; Groups 3 and 4 (chemopreventive) received 4NQO for 8 weeks and were simultaneously treated with FD extract at 250 and 500 mg/kg, respectively, by oral gavage; Groups 5 and 6 (chemotherapeutic) received 4NQO for 8 weeks followed by the administration of FD extract at 250 and 500 mg/kg, respectively, for another 10 weeks. The incidence of oral cancer was microscopically evaluated. Moreover, immunohistochemical expression was analysed in tongue specimens using an image analyser computer system, while the RT2 profiler PCR array method was employed for gene expression analysis.

Results
The results of the present study showed a beneficial regression effect of the FD extract on tumor progression. The FD extract significantly reduced the incidence of oral squamous cell carcinoma (OSCC) from 100% to 14.3% in the high-dose groups. The immunohistochemical analysis showed that the FD extract had significantly decreased the expression of the key tumor marker cyclin D1 and had significantly increased the expression of the β-catenin and e-cadherin antibodies that are associated with enhanced cellular adhesion. Based on the gene expression analysis, FD extract had reduced the expression of the TWIST1 and RAC1 genes associated with epithelial-mesenchymal transition (EMT) and had significantly downregulated the COX-2 and EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.β-catenin and e-cadherin antibodies that are associated with enhanced cellular adhesion. Based on the gene expression analysis, FD extract had reduced the expression of the TWIST1 and RAC1 genes associated with epithelial-mesenchymal transition (EMT) and had significantly downregulated the COX-2 and EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.TWIST1 and RAC1 genes associated with epithelial-mesenchymal transition (EMT) and had significantly downregulated the COX-2 and EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.RAC1 genes associated with epithelial-mesenchymal transition (EMT) and had significantly downregulated the COX-2 and EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.COX-2 and EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.EGFR genes associated with cancer angiogenesis, metastasis, and chemoresistance. Our data suggest that the FD extract exerts chemopreventive and chemotherapeutic activities in an animal model induced for oral cancer using 4NQO, thus having the potential to be developed as chemopreventive and chemotherapeutic agents.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge