Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Insect Physiology 2020-Apr

Aphid growth and reproduction on plants with altered sterol profiles: novel insights using Arabidopsis mutant and overexpression lines.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Ivy Chen
Robert Grebenok
Hubert Schaller
Keyan Zhu-Salzman
Spencer Behmer

Lykilorð

Útdráttur

Sterols are essential membrane components and are critical for many physiological processes in all eukaryotes. Insects and other arthropods are sterol auxotrophs that typically rely on a dietary source of sterols. Herbivorous insects generally obtain sterols from plants and then metabolize them into cholesterol, the dominant sterol in most insects. However, there is significant variation in phytosterol structure, and not all phytosterols are equally suitable for insects. In the current study, we used seven Arabidopsis thaliana lines that display altered sterol profiles due to mutations in the sterol biosynthetic pathway or to overexpression of key enzymes of the pathway, and investigated how plant sterol profiles affected green peach aphid (Myzus persicae) growth and reproduction. We also characterized the sterol profile of aphids reared on these Arabidopsis genotypes. Aphids on two mutant lines (14R/fk and ste1-1) that accumulated biosynthetic sterol intermediates (Δ8,14 - sterols, and Δ7- sterols, respectively) all showed significantly reduced growth and reproduction. Aphids on SMT2COSUP plants (which have decreased β-sitosterol but increased campesterol) also displayed significantly reduced growth and reproduction. However, aphids on SMT2OE plants (which have increased β-sitosterol but decreased campesterol) performed similarly to aphids on wild-type plants. Finally, Arabidopsis plants that had an overproduction of sterols (CD-HMGROE) or decreased sterol esters (psat1-2) had no impact on aphid performance. Two noteworthy results come from the aphid sterol profile study. First, β-sitosterol, cholesterol and stigmasterol were recovered in all aphids. Second, we did not detect Δ8,14-sterols in aphids reared on 14R/fk plants. We discuss the implications of our findings, including how aphid sterol content does not appear to reflect plant leaf sterol profiles. We also discuss the potential of modifying plant sterol profiles to control insect herbivore pests, including aphids.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge