Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2020-Mar

Are arbuscular-mycorrhizal Alnus incana seedlings more resistant to drought than ectomycorrhizal and non-mycorrhizal ones?

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Jouni Kilpeläinen
Pedro Aphalo
Aitor Barbero-López
Bartosz Adamczyk
Sammi Nipu
Tarja Lehto

Lykilorð

Útdráttur

Arbuscular mycorrhizas (AM) prevail in warm and dry climates and ectomycorrhizas (EM) in cold and humid climates. We suggest that the fungal symbionts benefit their host plants especially in the corresponding conditions. The hypothesis tested was that AM plants are more drought resistant than EM or non-mycorrhizal (NM) plants.Gray alder (Alnus incana) seedlings were inoculated with two species of either AM or EM fungi or none. In one controlled-environment experiment, there was a watering and a drought treatment. Another set of seedlings were not watered until permanent wilting.The AM plants were somewhat smaller than EM and NM, and at the early stage of the drought treatment the soil-moisture content was slightly higher in the AM pots. Shoot water potential was highest in the AM treatment during severe drought, while stomatal conductance and photosynthesis did not show a mycorrhizal effect. In the lethal-drought set the AM maintained their leaves longer than EM and NM plants, and the AM seedlings survived longer than NM seedlings. Foliar phosphorus and sulfur concentrations remained higher in AM plants than EM or NM but potassium, copper and iron increased in EM during drought. The root tannin concentration was lower in AM than EM and drought doubled it.Although the difference to EM plants was not large, the hypothesis was supported by the better performance of AM plants during a severe short-termed drought. Sustained phosphorus nutrition during drought in AM plants was a possible reason for this. Moreover, the higher foliar sulfur and lower metal-nutrient concentrations in AM may reflect differences in nutrient uptake or (re)translocation during drought, which merit further research. The much larger tannin concentrations in EM root systems than AM did not appear to protect the EM plants from drought. The differential tannin accumulation in AM and EM plants needs further attention.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge