Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2020-Sep

Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Gitishree Das
Jayanta Patra
Han-Seung Shin

Lykilorð

Útdráttur

Equisetum arvense is well known to hold numerous bioactive phytochemicals. In biosynthesis of nanoparticles (NPs), the bioactive compounds existing in natural materials like medicinal fern act as reducing and capping elements and this NPs synthesis process do not comprise of any toxic elements making them advantageous from other NPs synthesis process. After collection, identification and extraction of Equisetum arvense (Ea) aqueous extract, the biosynthesis of AgNPs was achieved followed by its characterization and multi-biopotential activity studies. The UV-visible spectroscopy, confirmed the biosynthesis of Ea-AgNPs. X-ray diffraction configurations (XRD) identified the crystalline nature of the NPs. The Elemental composition of the NPs was elucidated by the energy dispersive X-ray spectroscopy (EDX), and the scanning electron microscopy (SEM) revealed the structure of Ea-AgNPs. Bioactive compounds existing in Ea-extract accounting for Ag + ion reduction, capping and stabilization of NPs was detected by Fourier transform infrared spectroscopy (FTIR). The Dynamic Light Scattering (DLS) and the zeta potential was carried out to know the size and charge of Ea-AgNPs. The Ea-AgNPs exhibited high antidiabetic effect in terms of α-glucosidase inhibition, high cytotoxic effect against HepG2 cell lines along with antibacterial and antioxidant effect. This study reports biosynthesis of Ea-AgNPs using aqueous extract of Ea, its substantial anticancer, antidiabetic, antioxidant and antibacterial effects, which could be advantageous to pharmaceutical industries in the controlling of various diseases including diabetes, cancer, and antibacterial related diseases.

Keywords: Antibacterial; Antidiabetic; Antioxidant; Biosynthesis; Cytotoxicity; Fern; Silver nanoparticles.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge