Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Pollution 2019-Nov

Characterizing the interactions between sediment dissolved organic matter and zinc using multispectroscopic techniques.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Weiwei Lü
Xin Yao
Haoyu Ren
Huanguang Deng
Min Yao
Baohua Zhang

Lykilorð

Útdráttur

Sediment dissolved organic matter (DOM) was collected in November 2018 from Lake Dongping, China. The lake was divided into the entrance of the Dawen River, the open region of the lake, the tourism district and the macrophyte-dominated region based on principal component analysis (PCA) of 9 DOM-related parameters. Multispectroscopic tools were used to investigate the binding of zinc (Zn) with four kinds of DOM collected from the entrance of the Dawen River (EDOM), the open area of the lake (ODOM), the macrophyte-dominated area (mainly dominated by Potamogeton crispus L.) (PDOM) and the tourism district (TDOM). Three fluorescent components, the humic-like (components 1 and 3) and protein-like (component 2) components, were found by excitation-emission matrix spectra with parallel factor analysis. The EDOM, ODOM and TDOM were controlled by protein-like components, and the PDOM was controlled by humic-like components. Different components respond differently to Zn addition. The binding order of the tyrosine-like fraction > the tryptophan fraction > the humic-like fraction was identified by Synchronous fluorescence (SF) spectra and two-dimensional correlation spectroscopy (2D-COS). The fluorescence intensity of the protein-like component was suppressed, and the humic-like component was enhanced with the addition of Zn. The effective quenching constants (log K) of the protein-like component in PDOM were clearly higher than those in the EDOM, ODOM and TDOM, indicating higher metal binding potential in PDOM than in other kinds of DOM in Lake Dongping. The %Fmax (the amounts of each component measured as % of the total fluorescence maxima for the three components) of the humic-like components exhibited a gradual increase in all kinds of DOM with the addition of Zn, suggesting that the addition of Zn increased the humification of DOM.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge