Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Botany 2020-Jul

Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Ashley Henderson
Philip Crim
Jonathan Cumming
Jennifer Hawkins

Lykilorð

Útdráttur

Premise: Soil salinity negatively impacts plant function, development, and yield. To overcome this impediment to agricultural productivity, variation in morphological and physiological response to salinity among genotypes of important crops should be explored. Sorghum bicolor is a staple crop that has adapted to a variety of environmental conditions and contains a significant amount of standing genetic diversity, making it an exemplary species to study variation in salinity tolerance.

Methods: Twenty-one diverse Sorghum accessions were treated with nonsaline water or 75 mM sodium chloride. Salinity tolerance was assessed via changes in biomass between control and salt-treated individuals. Accessions were first rank-ordered for salinity tolerance, and then individuals spanning a wide range of responses were analyzed for foliar proline and ion accumulation. Tolerance rankings were then overlaid on a neighbor-joining tree.

Results: We found that, while proline is often a good indicator of osmotic adjustment and is historically associated with increased salt tolerance in many species, proline accumulation in sorghum reflects a stress response injury rather than acclimation. When combining ion profiles with stress tolerance indices, the variation observed in tolerance was not a sole result of Na+ accumulation, but rather reflected accession-specific mechanisms.

Conclusions: We identified significant variation in salinity tolerance among Sorghum accessions that may be a result of the domestication history of Sorghum. When we compared our results with known phylogenetic relationships within sorghum, the most parsimonious explanation for our findings is that salinity tolerance was acquired early during domestication and subsequently lost in accessions growing in areas varying in soil salinity.

Keywords: comparative analysis; environmental adaptation; osmotic adjustment; potassium sodium ratio; proline; relative decreases in plant biomass; salinity stress; stress tolerance; stress tolerance index.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge