Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2020-Apr

Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Kun Yan
Wenjun He
Lanxing Bian
Zishan Zhang
Xiaoli Tang
Mengxin An
Lixia Li
Guangxuan Han

Lykilorð

Útdráttur

Glycine soja is a halophytic soybean native to saline soil in Yellow River Delta, China. Photosystem I (PSI) performance and the interaction between photosystem II (PSII) and PSI remain unclear in Glycine soja under salt stress. This study aimed to explore salt adaptability in Glycine soja in terms of photosystems coordination.

RESULTS
Potted Glycine soja was exposed to 300 mM NaCl for 9 days with a cultivated soybean, Glycine max, as control. Under salt stress, the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR0) were significantly decreased with the loss of PSI and PSII reaction center proteins in Glycine max, and greater PSI vulnerability was suggested by earlier decrease in △MR/MR0 than Fv/Fm and depressed PSI oxidation in modulated 820 nm reflection transients. Inversely, PSI stability was defined in Glycine soja, as △MR/MR0 and PSI reaction center protein abundance were not affected by salt stress. Consistently, chloroplast ultrastructure and leaf lipid peroxidation were not affected in Glycine soja under salt stress. Inhibition on electron flow at PSII acceptor side helped protect PSI by restricting electron flow to PSI and seemed as a positive response in Glycine soja due to its rapid recovery after salt stress. Reciprocally, PSI stability aided in preventing PSII photoinhibition, as the simulated feedback inhibition by PSI inactivation induced great decrease in Fv/Fm under salt stress. In contrast, PSI inactivation elevated PSII excitation pressure through inhibition on PSII acceptor side and accelerated PSII photoinhibition in Glycine max, according to the positive and negative correlation of △MR/MR0 with efficiency that an electron moves beyond primary quinone and PSII excitation pressure respectively.

Therefore, photosystems coordination depending on PSI stability and rapid response of PSII acceptor side contributed to defending salt-induced oxidative stress on photosynthetic apparatus in Glycine soja. Photosystems interaction should be considered as one of the salt adaptable mechanisms in this halophytic soybean.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge