Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Omega 2020-Apr

Spectroscopic and Molecular Docking Investigation on the Noncovalent Interaction of Lysozyme with Saffron Constituent "Safranal".

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Mohd Ali
Hamad Al-Lohedan

Lykilorð

Útdráttur

Owing to the various beneficial properties of the popular spice saffron, the interaction of safranal, a secondary metabolite of the former, with hen egg white lysozyme was investigated. The formation of a complex was evidenced by UV-visible spectroscopy. Fluorescence quenching experiments were also performed to understand the binding mechanism and to evaluate the forces involved in binding. The strong absorption of safranal in the range of excitation and emission wavelengths of lysozyme fluorescence required the correction of the inner filter effect for fluorescence spectra to obtain the apparent extent of binding. There was a considerable difference between the observed spectra and corrected spectra, and a similar observation was found in the case of synchronous fluorescence spectra. From the analysis of quenching data, it was found that the mechanism involved in quenching was static with 1:1 binding between them. The interaction was found to be driven, mainly, by hydrophobic forces and hydrogen bonding. Safranal had negligible impact on the secondary structure of lysozyme. The interaction was also studied by molecular docking, and the results were in good agreement with the results obtained experimentally. The binding site of safranal was in the big hydrophobic cavity of lysozyme. The amino acids involved in the interaction were Asp52, Ile58, Gln57, Asn59, Trp62, Trp63, Trp108, Ile98, Asp101, and Ala107.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge