Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2020-Sep

Systems pharmacology unravels the synergic target space and therapeutic potential of Rhodiola rosea L. for non-small cell lung cancer

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Xia Zhang
Jinglin Zhu
Jiangna Yan
Yue Xiao
Ruijie Yang
Ruifei Huang
Jun Zhou
Zhenzhong Wang
Wei Xiao
Chunli Zheng

Lykilorð

Útdráttur

Background: Lung cancer is the most common and mortal cancer worldwide. Rhodiola rosea L. (RR), a well-known traditional Chinese medicine (TCM), has been turned out to be effective in anti-lung cancer therapy, but its molecular mechanism of action has not been clearly understood.

Purpose: In this study, we aimed to elucidate the possible molecular mechanism underlying the effect of RR against non-small cell lung cancer (NSCLC) by systems pharmacology.

Methods: The effects of RR on NSCLC were examined in Lewis lung carcinoma (LLC) tumor-bearing mice models. The possible molecular mechanism was unraveled by systems pharmacology, which includes pharmacokinetics evaluation, active compounds screening, target prediction and network analysis. Cell proliferation was examined by cell counting kit-8 (CCK-8) assay; cell apoptosis was detected by flow cytometry; protein and proinflammatory cytokines expression were evaluated by Western blot and qRT-PCR.

Results: In vivo, RR significantly inhibited the tumor growth and prolonged the survival of the tumor bearing mice. In silico, we identified 19 potential active molecules (e.g., salidroside and rhodiosin), 112 targets (e.g., COX-2 and AKT) and 27 pathways (e.g., PI3K/AKT signaling pathway and NF-κB signaling pathway) for RR. Additionally, targets analysis and networks construction further revealed that RR exerted anti-cancer effects by regulating apoptosis, angiogenesis and inflammation. In vitro, salidroside could significantly decrease expression of pro-angiogenic factors (e.g., VEGF and eNOS) and proinflammatory cytokines (e.g., COX-2, iNOS and TNF-α). Also, Bcl-2, an anti-apoptotic protein was decreased whereas Bax, a pro-apoptotic protein, was increased. Further flow cytometry analysis showed that salidroside could induce apoptosis in H1975 cells.

Conclusions: Mechanistically, the antitumor effect of RR on NSCLC was responsible for the synergy among anti-inflammatory, anti-angiogenic and pro-apoptotic.

Keywords: Antitumor; Non-small cell lung cancer; Rhodiola rosea L.; Systems pharmacology; Target.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge