Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

asparagine/hypoxia

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
Bls 1 frá 115 niðurstöður
We have confirmed that the NO donor (+/-)-S-nitroso-N-acetylpenicillamine (SNAP) stabilizes the transactive form of hypoxia-inducible factor-1alpha (HIF-1alpha), leading to the induction of HIF-1alpha target genes such as vascular endothelial growth factor and carbonic anhydrase 9. Activation of
Factor-inhibiting hypoxia-inducible factor (FIH) catalyzes the β-hydroxylation of an asparagine residue in the C-terminal transcriptional activation domain of the hypoxia inducible factor (HIF), a modification that negatively regulates HIF transcriptional activity. FIH also catalyzes the
We found that the Cu(II) and Zn(II)-specific chelator Clioquinol (10-50 microM) increased functional hypoxia-inducible factor 1alpha (HIF-1alpha) protein, leading to increased expression of its target genes, vascular endothelial growth factors and erythropoietin, in SH-SY5Y cells and HepG2 cells.

Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Asparagine-803 in the C-terminal transactivation domain of human hypoxia-inducible factor (HIF)-1 alpha-subunit is hydroxylated by factor inhibiting HIF-1 (FIH-1) under normoxic conditions causing abrogation of the HIF-1alpha/p300 interaction. NMR and other analyses of a hydroxylated HIF fragment
Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha.
Hypoxia down-regulates the expression of cell surface major histocompatibility class I-related chain molecule A (MICA) without increasing its shedding. Recently, the inhibition of N-linked glycosylation was also shown to reduce the cell-surface expression of MICA. We investigated the participation

Evidence for the slow reaction of hypoxia-inducible factor prolyl hydroxylase 2 with oxygen.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The response of animals to hypoxia is mediated by the hypoxia-inducible transcription factor. Human hypoxia-inducible factor is regulated by four Fe(II)- and 2-oxoglutarate-dependent oxygenases: prolyl hydroxylase domain enzymes 1-3 catalyse hydroxylation of two prolyl-residues in hypoxia-inducible

Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Establishing the severity of hypoxic insult during the delivery of a neonate is key step in the determining the type of therapy administered. While successful therapy is present, current methods for assessing hypoxic injuries in the neonate are limited. Urine Nuclear Magnetic Resonance (NMR)
The voltage-dependent anion channel 1 (VDAC1), an outer mitochondria membrane (OMM) protein, serves as a mitochondrial gatekeeper, mediating the transport of nucleotides, Ca2+ and other metabolites across the OMM. VDAC1 also plays a central role in mitochondria-mediated apoptosis by facilitating the
Several physiologically important genes were found to be regulated by hypoxia at the transcriptional level. The Pleckstrin homology-like domain, family A, member 2 (PHLDA2) gene was previously identified as an imprinted gene. The present study was aimed to determine the structure of complete cDNA

Blood-brain amino acid transport and content during anoxia and reoxygenation.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The isolated dog brain preparation was used to investigate the dynamics of cerebral amino acid metabolism during perfusion with anoxic blood (PO2 less than 10 mmHg). Significant uptake of histidine and lysine, as determined by arteriovenous (A-V) differences in whole blood samples, was observed
Precise regulation of the evolutionarily conserved hypoxia-inducible transcription factor (HIF) ensures proper adaptation to variations in oxygen availability throughout development and into adulthood. Oxygen-dependent regulation of HIF stability and activity are mediated by hydroxylation of
In this study, hypoxia inducible factor-1α (HIF-1α) and hypoxia inducible factor-1β (HIF-1β) from small abalone Haliotis diversicolor were cloned. The cDNA of H. diversicolor HIF-1α (HdHIF-1α) is 2,833 bp encoding a protein of 711aa and H. diversicolor HIF-1β (HdHIF-1β) is 1919 bp encoding a protein
Hypoxia-inducible factor 1alpha (HIF-1alpha) is a key transcription factor that controls a variety of cellular and systemic homeostatic responses to hypoxic stress. Expression and function of HIF-1alpha have not been studied in crustaceans, which experience wide fluctuations of oxygen tensions in

Local mitochondrial-endolysosomal microfusion cleaves voltage-dependent anion channel 1 to promote survival in hypoxia.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The oxygen-limiting (hypoxic) microenvironment of tumors induces metabolic reprogramming and cell survival, but the underlying mechanisms involving mitochondria remain poorly understood. We previously demonstrated that hypoxia-inducible factor 1 mediates the hyperfusion of mitochondria by inducing
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge