Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

asparagine/kannabis

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
7 niðurstöður
Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of

Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The CB1 cannabinoid receptor is a constitutively active receptor that can sequester G(i/o)-proteins and prevent other G(i/o)-coupled receptors from signaling (Bouaboula et al., 1997; Pan et al., 1998; Vasquez and Lewis, 1999). G-protein sequestration occurs because the population of CB1 cannabinoid

Mapping the structural requirements in the CB1 cannabinoid receptor transmembrane helix II for signal transduction.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Amino acid residues in the transmembrane domains of the CB(1) receptor are important for ligand recognition and signal transduction. We used site-directed mutagenesis to identify the role of two novel and adjacent residues in the transmembrane helix II domain, Ile2.62 and Asp2.63. We investigated
Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations

Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The metabolomic analysis of 12 Cannabis sativa cultivars was carried out by 1H NMR spectroscopy and multivariate analysis techniques. Principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between those samples by principal component 1 (PC1) and principal component 3
In this study, we focused on the pharmacological characterization of cannabinoid receptor coupling to G protein-gated inwardly rectifying potassium (GIRK) channels. Cannabinoids were tested on Xenopus laevis oocytes coexpressing the CB(1) receptor and GIRK1 and GIRK4 channels (CB(1)/GIRK1/4) or the
The cannabinoid receptors, CB1 and CB2, are members of the G-protein coupled receptor family and share many of this family's structural features. A highly conserved aspartic acid residue in the second transmembrane domain of G-protein coupled receptors has been shown for many of these receptors to
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge