Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

carboxylase/arabidopsis

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
Bls 1 frá 225 niðurstöður

Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
The first committed step in fatty acid synthesis is mediated by acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback regulated by short-term or long-term exposure to fatty acids in the form of Tween 80 (predominantly

Non-catalytic subunits facilitate quaternary organization of plastidic acetyl-CoA carboxylase.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Arabidopsis (Arabidopsis thaliana), like most dicotyledonous plants, expresses a multicomponent, heteromeric acetyl-CoA carboxylase (htACCase), which catalyzes the generation of the malonyl-CoA precursor of de novo fatty acid biosynthesis. This enzyme consists of four catalytic subunits: biotin
Phosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing
A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected.
One independent and two overlapping rape cDNA clones have been isolated from a rape embryo library. We have shown that they encode a 2.3 kb and a 2.5 kb stretch of the full-length acetyl-CoA carboxylase (ACCase) cDNA, corresponding to the biotin-binding and transcarboxylase domains respectively.

A Mutant of Arabidopsis thaliana Which Lacks Activation of RuBP Carboxylase In Vivo.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
A mutant of Arabidopsis thaliana has been isolated in which ribulose-1,5-bisphosphate carboxylase is present in a nonactivatable form in vivo. The mutation appears to affect carboxylase activation specifically, and not any other enzyme of the photosynthesis or photorespiratory cycles. The effect of

A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase activation in vivo.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with

A role of GUNs-Involved retrograde signaling in regulating Acetyl-CoA carboxylase 2 in Arabidopsis.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
In Arabidopsis thaliana (Arabidopsis), Acetyl-CoA Carboxylase 2 (ACC2) is a nuclear DNA-encoded and plastid-targeted enzyme that catalyzes the conversion of acetyl-CoA to malonyl-CoA. ACC2 improves plant growth and development when chloroplast translation is impaired. However, little is known about
3-Methylcrotonyl-CoA: carboxylase (EC 6.4.1.4; MCC) deficiency is an inborn error of the leucine degradation pathway (MIM *210200) characterized by increased urinary excretion of 3-hydroxyisovaleric acid and 3-methylcrotonylglycine. The clinical phenotypes are highly variable ranging from
3-Methylcrotonyl-CoA carboxylase (MCCase; EC 6.4.1.4) is a mitochondrial biotin enzyme and plays an essential role in the catabolism of leucine and isovalerate in animals, bacterial species, and plants. MCCase consists of two subunits, those that are biotin-containing and non-biotin-containing. The
Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (Ricinus communis) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is highly regulated in response to fluctuations in the environment, including changes in irradiance. However, no complex data are available on Rubisco regulatory mechanisms triggered in plants which are submitted to moderate-low irradiance
Heteromeric acetyl coenzyme A carboxylase (ACCase), a rate-limiting enzyme in fatty acid biosynthesis in dicots, is a multi-enzyme complex consisting of biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase (alpha-CT and beta-CT). In the present study, four genes encoding
Immunoblot analysis of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase from the green alga Chlamydomonas reinhardtii indicated the presence of a single polypeptide. This observation contrasts with the Spinacea oleracea (spinach) and Arabidopsis thaliana proteins, in which two
We report the molecular cloning and sequence of the cDNA coding for the biotin-containing subunit of the chloroplastic acetylcoenzyme A (CoA) carboxylase (ACCase) of Arabidopsis thaliana (CAC1). The 3' end of the CAC1 sequence, coding for a peptide of 94 amino acids, which includes a putative
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge