Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ceramide/hypoxia

Krækjan er vistuð á klemmuspjaldið
Bls 1 frá 113 niðurstöður

Protection of C. elegans from anoxia by HYL-2 ceramide synthase.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide
Ceramide functions as an important second messenger in apoptosis signaling pathways. In this report, we show that treatment of NT-2 neuronal precursor cells with hypoxia/reoxygenation (H/R) resulted in ceramide up-regulation. This elevation in ceramide was primarily due to the actions of acid

TNF-alpha pretreatment prevents subsequent activation of cultured brain cells with TNF-alpha and hypoxia via ceramide.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
We have developed a cellular model in which cultured astrocytes and brain capillary endothelial cells preconditioned with tumor necrosis factor-alpha (TNF-alpha) fail to upregulate intercellular adhesion molecule-1 (ICAM-1) protein (80% inhibition) and mRNA (30% inhibition) when challenged with
Preconditioning brain with tumor necrosis factor alpha (TNF-alpha) can induce tolerance to experimental hypoxia and stroke and ceramide is a downstream messenger in the TNF-alpha signaling pathway. A hypoxic-ischemic (HI) insult in the immature rat injures brain primarily through apoptosis.
In endothelium, reoxygenation after hypoxia (H/R) has been shown to induce production of reactive oxygen species (ROS) by complex III of the mitochondrial respiratory chain. The purpose of the present study was to test the involvement of ceramide in this phenomenon. Human umbilical vein endothelial
Endothelial oxidative stress induces cellular activation and sometimes death. Endothelial death can occur via necrosis or apoptosis. Understanding the mechanisms involved in cellular activation and death may lead to therapeutics designed to increase death or preserve cellular function. In the
Oxygen-requiring enzymes, such as Δ4-desaturase (dihydroceramide desaturase), sphingolipid Δ4-desaturase/C-4-hydroxylase, and fatty acid 2-hydroxylase are involved in ceramide synthesis. We prepared free ceramides, sphingomyelins and glycosphingolipids (GSLs) from cancer cells cultivated under
Cellular hypoxia can lead to cell death or adaptation and has important effects on development, physiology, and pathology. Here, we investigated the role and regulation of ceramide in hypoxia-induced apoptosis of SH-SY5Y neuroblastoma cells. Hypoxia increased the ceramide concentration;

Adipocyte Hypoxia-Inducible Factor 2α Suppresses Atherosclerosis by Promoting Adipose Ceramide Catabolism.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Obesity-induced adipose dysfunction is a major contributor to atherosclerosis. Cold exposure has been reported to affect atherosclerosis through regulation of adipose function, but the mechanism has not been well clarified. Here, adipocyte hypoxia-inducible factor 2α (HIF-2α) was upregulated after
Patients with disseminated Ewing's family of tumors (ESFT) often experience drug-resistant relapse. We hypothesize that targeting minimal residual disease with the cytotoxic retinoid N-(4-hydroxyphenyl) retinamide (4-HPR; fenretinide) may decrease relapse. We determined the following: (a) 4-HPR
Ceramide is known to play a role in the cell signaling pathway involved in apoptosis. Most studies suggest that enhanced ceramide generation is the result of hydrolysis of sphingomyelin by sphingomyelinases. However, the role of ceramide synthase in enhanced ceramide generation has not been
Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that

New role for ceramide in hypoxia and insulin resistance

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Ceramides are significant metabolic products of sphingolipids in lipid metabolism and are associated with insulin resistance and hepatic steatosis. In chronic inflammatory pathological conditions, hypoxia occurs, the metabolism of ceramide changes, and insulin resistance arises. Hypoxia-inducible

[The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease].

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Ceramides, members of the sphingolipids, are produced in the central nervous system by de novo synthesis, sphingomyelin hydrolysis or the so-called salvage pathway. They are engaged in formation of lipid rafts that are essential in regulation and transduction of signals coming to the cell from the

Cell biology. Ceramides--friend or foe in hypoxia?

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge