Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

galactan/kartafla

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
Bls 1 frá 54 niðurstöður
The effect of glycation of potato proteins on their immunoreactivity was studied by using a pool of human sera with specific IgE to potato proteins. Patatin conjugates were more immunoreactive than protease inhibitors ones. To better understand this behavior, the changes in patatin structure upon
Potato proteins are of high interest because of their high nutritional quality and multiple health benefits, but they are currently undervalued due to their limited solubility and stability. Glycated patatin (PTT) with galactose, galactooligosaccharides (GOSs) and galactan were produced through the
Rhamnogalacturonan (RG) I is a branched pectic polysaccharide in plant cell walls. Rhamnogalacturonan lyase (eRGL) from Aspergillus aculeatus is able to cleave the RG I backbone at specific sites. Transgenic potato (Solanum tuberosum L.) plants were made by the introduction of the gene encoding
We report the generation of Solanum tuberosum transformants expressing Cicer arietinum betaIII-Gal. betaIII-Gal is a beta-galactosidase able to degrade cell wall pectins during cell wall loosening that occurs prior to cell elongation. cDNA corresponding to the gene encoding this protein was
The subcellular localization and topology of rhamnogalacturonan I (RG-I) beta(1-->4)galactosyltransferase(s) (beta[1-->4]GalTs) from potato ( Solanum tuberosum L.) were investigated. Using two-step discontinuous sucrose step gradients, galactosyltransferase (GalT) activity that synthesized

Enzyme-Catalyzed Production of Potato Galactan-Oligosaccharides and Its Optimization by Response Surface Methodology.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
This work shows an optimized enzymatic hydrolysis of high molecular weight potato galactan yielding pectic galactan-oligosaccharides (PGOs), where endo-β-1,4-galactanase (galactanase) from Cellvibrio japonicus and Clostridium thermocellum was used. For this, response surface

RG-I galactan side-chains are involved in the regulation of the water-binding capacity of potato cell walls.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Potato cell walls (PCW) are a low value by-product from the potato starch industry. Valorisation of PCW is hindered by its high water-binding capacity (WBC). The composition of polysaccharides and interactions between these entities, play important roles in regulating the WBC in the cell wall

Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Galactan-rich rhamnogalacturonan I (RG I), exhibiting promising health benefits, is the most abundant polysaccharide in potato pulp by-product. In the present study, the microwave-assisted alkaline extraction of galactan-rich RG I was investigated. Solid/liquid ratio was identified as the most
Potato pulp is a high-volume side-stream from industrial potato starch manufacturing. Enzymatically solubilized β-1,4-galactan-rich potato pulp polysaccharides of molecular weights >100 kDa (SPPP) are highly bifidogenic in human fecal sample fermentations in vitro. The objective of the present study

Enzymatic generation of galactose-rich oligosaccharides/oligomers from potato rhamnogalacturonan I pectic polysaccharides.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Potato pulp by-product rich in galactan-rich rhamnogalacturonan I (RG I) was investigated as a new source of oligosaccharides with potential prebiotic properties. The efficiency of selected monocomponent enzymes and multi-enzymatic preparations to generate oligosaccharides/oligomers from potato RG I

Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-D-galactanase.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Potato tuber pectin is rich in galactan (oligomer of beta-1,4-linked galactosyl residues). We have expressed a fungal endo-galactanase cDNA in potato under control of the granule bound starch synthase promoter to obtain expression of the enzyme in tubers during growth. The transgenic plants
Potato pulp is a high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp is particularly rich in pectin, notably galactan branched rhamnogalacturonan I polysaccharides, which are highly bifidogenic when solubilized. The objective of the present study was
Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, β-Gal-14 hot buffer-soluble solids

The polysaccharide structure of potato cell walls: Chemical fractionation.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Cell walls of potato tubers were fractionated by successive extraction with various reagents. A slightly degraded pectic fraction with 77% galacturonic acid was extracted in hot, oxalate-citrate buffer at pH 4. A further, major pectic fraction with 38% galacturonic acid was extracted in cold 0.1 M

Transgenic modification of potato pectic polysaccharides also affects type and level of cell wall xyloglucan.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
BACKGROUND Genes encoding pectic enzymes were introduced into wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing β-galactosidase (β-Gal-14) or rhamnogalacturonan lyase (RGL-18). Pectic polysaccharides from the β-Gal-14 transgenic line exhibited
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge