Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phospholipase/arabidopsis

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
Bls 1 frá 288 niðurstöður

Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase Dα and Dβ.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical

Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Phosphoinositide-specific phospholipase C cleaves the substrate phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, both of which are second messengers in the phosphoinositide signal transduction pathways operative in animal cells. Five PI-PLC
The heat stress response is an important adaptation, enabling plants to survive challenging environmental conditions. Our previous work demonstrated that Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 9 (AtPLC9) plays an important role in thermotolerance. During prolonged

Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression,
A cDNA encoding a phosphoinositide-specific phospholipase C (PI-PLC) from the higher plant Arabidopsis thaliana was cloned and characterized. The gene corresponding to this cDNA is designated AtPLC2. The overall structure of the predicted AtPLC2 protein is similar to those of plant PI-PLCs and
Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism

Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of
Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs
Castor patatin-like phospholipase A IIIβ facilitates the exclusion of hydroxy fatty acids from phosphatidylcholine in developing transgenic Arabidopsis seeds. Hydroxy fatty acids (HFAs) are industrial useful, but their major natural source castor contains toxic components. Although expressing a
The structure and biosynthetic route for an unidentified lipid (lipid X) detected by TLC of cabbage (Brassica oleracea) lipids was determined. Lipid X is a phospholipid that is resistant to mild alkali and detectable by MALDI-TOF MS as an adduct with Phos-tag, a phosphate-capture zinc complex.
Calcium (Ca) is an essential element for all organisms. In animal cells, the plasma membrane-localized Ca receptor CaSR coupled to a phospholipase C (PLC)-dependent signaling cascade monitors extracellular Ca2+ concentrations ([Ca2+]ext) and responds with increases
We recently reported that cultivation of oat (Avena sativa L.) without phosphate resulted in plasma membrane phosphoglycerolipids being replaced to a large extent by digalactosyldiacylglycerol (DGDG) (Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C., and Sandelius, A. S. (2003) FEBS
Plasma membrane proteins are displayed through diverse mechanisms, including anchoring in the extracellular leaflet via glycosylphosphatidylinositol (GPI) molecules. GPI-anchored membrane proteins (GPI-APs) are a functionally and structurally diverse protein family, and their importance is

High-level expression and characterization of a novel phospholipase C from Thielavia terrestris suitable for oil degumming.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
A novel phospholipase C gene (TtPLC) from Thielavia terrestris CAU709 was cloned and efficiently expressed in Pichia pastoris. The deduced protein sequence of TtPLC shared the highest identity of 33% with the characterized phospholipase C from Arabidopsis thaliana. The highest phospholipase C yield
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge