Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of bioluminescence and chemiluminescence

A new screening method to detect water-soluble antioxidants: acetaminophen (Tylenol) and other phenols react as antioxidants and destroy peroxynitrite-based luminol-dependent chemiluminescence.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
K Van Dyke
M Sacks
N Qazi

Parole chiave

Astratto

This study is based on a simple chemical interaction of peroxynitrite (O = N-O-O-) and luminol, which produces blue light upon oxidation. Since peroxynitrite has a half-life of about 1 s, a drug known as linsidomine (SIN-1) is used as a peroxynitrite generator. Peroxynitrite can oxidize lipids, proteins and nucleic acids. Upon the stimulation of inflammation and/or infection, macrophages and neutrophils can be induced to produce large amounts of peroxynitrite, which can oxidize phenols and sulphhydryl-containing compounds. Therefore, phenols and sulphhydryls eliminate peroxynitrite. This is an example of the Yin-Yang hypothesis e.g. oxidation-reduction. Acetaminophen (Tylenol) can inhibit fever and some types of pain without being a particularly effective anti-inflammatory. Since it is a phenol, it could act as a nitration target for peroxynitrite. Then peroxynitrite, the possible cause of pain and elevated temperature, might be destroyed in the reaction. Acetaminophen is a phenolic compound which produces a clear inhibitory dose-response curve with peroxynitrite in its range of clinical effectiveness. Whether acetaminophen actually works as we suggest is to be proven. Three different types of reaction could decrease the amount of peroxynitrite: (a) interference with base-catalysed opening of the SIN-1 molecule; (b) destruction of one or both substances needed to form it--superoxide and/or nitric oxide; when the SIN-1 degrades to superoxide and nitric oxide, the former may be destroyed by superoxide dismutase (SOD); (c) peroxynitrite may react directly with phenols (mono-, di-, tri- and tetraphenols), possibly by nitration. Nordihydroguaiaretic acid and 2-hydroxyestradiol (catechol estrogen) are potent inhibitors of luminol light emission. Epineprine, isoproterenol, pyrogallol, catechol and ascorbic acid (a classic antioxidant) are all inhibitors of luminol chemiluminescence. Isoproterenol, norepinephrine/and epinephrine first inhibit light but overall stimulate the light production. Initially, SIN-1 degrades to produce peroxynitrite, which reacts with luminol to produce blue light. If any of three catecholamines are present with the reaction that produces light, there is an initial inhibition of light production, and then a marked stimulation. A possible reason for this is that these catechols are oxidized and the metabolized phenol stimulates the production of light from luminol. Also, during oxidation of catecholamines superoxide is sometimes formed, which could stimulate production of peroxynitrite. This simple screening system is introduced to find useful antioxidants against peroxynitrite.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge