Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science & Technology 2008-Aug

A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Paul L Kebabian
Ezra C Wood
Scott C Herndon
Andrew Freedman

Parole chiave

Astratto

We present results obtained from a greatly improved version of a previously reported nitrogen dioxide monitor (Anal Chem. 2005, 77, 724-728) that utilizes cavity attenuated phase shift spectroscopy (CAPS). The sensor, which detects the optical absorption of nitrogen dioxide within a 20 nm bandpass centered at 440 nm, comprises a blue light emitting diode, an enclosed stainless steel measurement cell (26 cm length) incorporating a resonant optical cavity of near-confocal design and a vacuum photodiode detector. An analog heterodyne detection scheme is used to measure the phase shift in the waveform of the modulated light transmitted through the cell induced by the presence of nitrogen dioxide within the cell. The sensor, which operates at atmospheric pressure, fits into a 19 in.-rack-mounted instrumentation box, weighs 10 kg, and utilizes 70 W of electrical power with pump included. The sensor response to nitrogen dioxide (calculated as the cotangent of the phase shift) is demonstrated to be linear (r2 > 0.9999) within +/- 1 ppb over a range of 0-320 ppb (by volume). The device exhibits a detection limit (3sigma precision) of less than 60 parts per trillion (0.060 ppb) with 10 s integration, a value derived from measurements at NO2 concentration levels of both 0 and 20 ppb; the detection limit improves as the integration time is increased to several hundred seconds. The observed baseline drift is less than +/- 0.5 ppb overthe course of a month. An intercomparison of measurements of ambient NO2 concentrations over several days using this sensor with a quantum cascade laser-based infrared absorption spectrometer and a standard chemiluminescence-based NOx analyzer is presented. The data from the CAPS sensor are highly correlated (r2 > 0.99) with the other two instruments. The absolute agreement between the CAPS and each of the two other instruments is within the expected statistical noise associated with the infrared laser-based absorption spectrometer (+/- 0.3 ppb with 10 s sampling) and chemiluminescence analyzer (+/- 0.4 ppb with 60 s averaging). The major limitation concerning accuracy is a direct spectral interference with phototchemically produced 1,2-dicarbonyl species (e.g., glyoxal, methylglyoxal). However, this interference can be readily removed by shifting the detection band to a slightly longer wavelength and ensuring that the lower edge of the detection band is greater than 455 nm.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge