Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bone 2017-Nov

Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP).

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Haitao Wang
Eileen M Shore
Robert J Pignolo
Frederick S Kaplan

Parole chiave

Astratto

Fibrodysplasia ossificans progressiva (FOP), is caused by mutations in the type I BMP receptor ACVR1 that lead to increased activation of the BMP-pSmad1/5/8 signaling pathway. Recent findings suggest that Activin A (Act A) promiscuously stimulates the bone morphogenetic protein (BMP) signaling pathway in vitro and mediates heterotopic ossification (HO) in mouse models of FOP, but primary data from FOP patient cells are lacking.

To examine BMP-pSmad1/5/8 pathway signaling and chondro-osseous differentiation in response to endogenous and exogenous Act A in primary connective tissue progenitor cells [CTPCs; also known as stem cells from human exfoliated deciduous teeth (SHED) cells] from patients with FOP. These cells express the common FOP mutation, ACVR1 (R206H).

We found that Act A amplifies dysregulated BMP pathway signaling in human FOP primary CTPCs cells through the Smad1/5/8 pathway and induces chondro-osseous differentiation. Amplification of BMP-pSmad1/5/8 signaling was inhibited by Follistatin and by a neutralizing antibody to Activin A. The increased basal pSmad1/5/8 activity, as well as the hypoxia-induced stimulation of FOP CTPCs cells, were BMP4 and Act A independent. Importantly, either BMP4 or Act A stimulated pSmad1/5/8 pathway signaling but BMP4 signaling was not dependent on Activin A and vice versa. Circulating plasma levels of Act A or BMP4 are similar in controls compared to FOP patients, and suggest the potential for an autocrine or paracrine route for pathological signaling.

The mutated FOP receptor [ACVR1 (R206H)] is hypersensitive to BMP4 and uniquely sensitive (compared to the wild type receptor) to Act A. Both canonical and non-canonical ligands have a synergistic effect on BMP-pSmad1/5/8 signaling in FOP CTPCs and may cooperate to alter the threshold for HO in FOP. Our findings in primary human FOP CTPCs have important implications for the design of clinical trials to inhibit dysregulated BMP pathway signaling in humans who have FOP.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge