Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Communications 2010-Sep

"Alive" dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Xuhong Qian
Yi Xiao
Yufang Xu
Xiangfeng Guo
Junhong Qian
Weipin Zhu

Parole chiave

Astratto

In this feature article, we report our recent progresses in fluorescent sensors of biological dyes from the viewpoint of supramolecular and bioorganic chemistry. For signalling fluorophores, we extended or created naphthalene-based ICT systems, e.g. amino-1,8-naphthalimides, amino-1,8-dicyanonaphthalenes and acenaphthopyrrol-9-carbonitriles. We also developed BODIPY derivatives with large Stokes shifts and high fluorescence quantum yields in polar solvents, and a rhodamine analogue working in strong competitive aqueous solution as well as its silaanthracene analogue with a bathochromic shift as large as 90 nm. For sensing mechanisms, we extended or developed the following methods to improve sensing: e.g. PET in a photogenerated electronic field, TICT promoted PET derived from aminoalkyl or piperazino aminonaphthalimides, and the translation/amplification effect of surfactant micelles or aggregation on fluorescent sensing. We also successfully designed deprotonation strengthened ICT, FRET-chemodosimeter sensing systems. For non-cyclic recognition receptors, naphthalimides with two or more side chains at their 4,5- or 3,4-positions, as a convenient and simple platform for ratiometric sensors, were created for the recognition of heavy and transition metallic cations; multi-armed polyamides with more side chains were innovated as a versatile platform for the sensing of metal ions with high affinity, selectivity and positive homotropic allosteric effects. We designed V-shape sensors of the bis(aminomethyl)pyridine receptor with two fluorophores to show high performance. Finally, the intracellular applications of the above sensors and dyes, e.g. imaging heavy and transition metal ions in cells, fluorescent marking of hypoxia of tumour cells, are also reviewed.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge