Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology and Biochemistry 2016-Aug

Anatomical distribution of primary amine oxidase activity in four adipose depots and plasma of severely obese women with or without a dysmetabolic profile.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Christian Carpéné
Francisco Les
Mounia Hasnaoui
Simon Biron
Picard Marceau
Denis Richard
Jean Galitzky
Denis R Joanisse
Pascale Mauriège

Parole chiave

Astratto

Semicarbazide-sensitive amine oxidase (SSAO), identical to primary amine oxidase or vascular adhesion protein-1, is a membrane enzyme that generates hydrogen peroxide. SSAO is highly expressed at the adipocyte surface, and its plasma levels increase with type 2 diabetes. Since visceral adipose tissue (AT) is more tightly associated with obesity complications than subcutaneous (SC) abdominal fat, we compared SSAO activity in plasma and 4 distinct AT locations in 48 severely obese women (body mass index (BMI), averaging 54 ± 11 kg/m2), with or without a dysmetabolic profile. Higher glucose and triacylglycerol levels vs lower high-density lipoprotein (HDL)-cholesterol characterized dysmetabolic women (DYS; n = 25) from non-dysmetabolic (NDYS; n = 23), age- and weight-matched subjects. SC, mesenteric (ME), omental (OM), and round ligament (RL) fat locations were collected during bariatric surgery. SSAO capacity to oxidize up to 1 mM benzylamine was determined in AT and plasma with radiometric and fluorimetric methods. Plasma SSAO was higher in the DYS group. SSAO activity was higher in fat than in plasma, when expressed as radiolabeled benzaldehyde per milligram of protein. In ATs from DYS women, protein content was 10 % higher, and basal hydrogen peroxide release lower than in NDYS subjects, except for RL location. The SSAO affinity towards benzylamine did not exhibit regional variation and was not altered by a dysmetabolic profile (K m averaging 184 ± 7 μM; n = 183). Although radiometric and fluorimetric methods gave different estimates of oxidase activity, both indicated that AT SSAO activity did not vary according to anatomical location and/or metabolic status in severely obese women.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge